2.1 Functions and Their Graphs

- **Goals** Represent relations and functions.
 - Graph and evaluate linear functions.

VOCABULARY
Relation A pairing of input values with output values
Domain of a relation The set of input values for a relation
Range of a relation The set of output values for a relation
Function A relation with exactly one output for each input
Ordered pair A pair of numbers of the form (x, y) that represents a point in the coordinate plane
Coordinate plane A plane divided into four quadrants by the <i>x</i> -axis and the <i>y</i> -axis that is used to plot ordered pairs
Equation in two variables An equation such as $y = 2x + 1$
Solution of an equation in two variables An ordered pair (x, y) that makes the equation a true statement when the values of x and y are substituted into the equation
Independent variable The input variable in an equation
Dependent variable The output variable in an equation
Graph of an equation in two variables The collection of all points (x, y) whose coordinates are solutions of the equation
Linear function A function of the form $y = mx + b$ where <i>m</i> and <i>b</i> are constants
Function notation Use of the symbol $f(x)$ for the dependent variable of a function

Example 1 Identifying Functions

Identify the domain and range. Is the relation a function?

- a. The domain consists of -1, 1, and 2, and the range consists of 1, 2, 3, and -2. The relation is not a function because the input -1 is mapped onto both 1 and 3.
- **b.** The domain consists of 1, 2, 3, and -2, and the range consists of -2, 1, and 2. The relation is a function because each input is mapped to exactly one output.

Example 2 Graphing Relations

Graph the relations given in Example 1.

- **a.** Write the relation as a set **b.** Write the relation as a set of ordered pairs: (-1, -2), of ordered pairs: (1, -2)
- of ordered pairs: (1, -2), (2, 1), (3, 2),(-2, 2). Plot the points.

1. Identify the domain and range and tell

whether the relation is a function. Write the relation as a set of ordered pairs.

domain: -1, 1, 3; range: -2, 0, 2; not a function; (-1, -2), (-1, 2), (1, 0), (3, 0)

VERTICAL LINE TEST FOR FUNCTIONS

A relation is a function if and only if no vertical line <u>intersects</u> the graph of the relation at more than one point.

Example 3 Using the Vertical Line Test in Real Life

The graph shows the scores s and time spent studying *t* for several students who took a test. Are the scores a function of the time spent studying? Explain.

Solution

The scores are <u>not a function</u> of the time spent studying because there is a vertical line that

intersects the graph at more than

one point. A vertical line passes through both $(\underline{60}, \underline{30})$ and $(\underline{60}, \underline{50})$.

GRAPHING EQUATIONS IN TWO VARIABLES

To graph an equation in two variables, follow these steps.

- Step 1 Construct a table of values .
- Step 2 Graph enough solutions to recognize a pattern .
- Step 3 Connect the points with a line or a curve.

Example 4 Graphing a Function

Graph the function y = x - 1.

1. Make a table of values.

2. Plot the points. Notice the five points lie on a line .

3. Draw a line through the points.

Checkpoint Complete the following exercises.

Example 5 Evaluating Func	tions		
Evaluate the function when $x = 2$.			
a. $f(x) = -3x + 4$	b. $f(x) = x^2 - 4x - 1$		
Solution			
a. $f(x) = -3x + 4$	Write function.		
$f(\underline{2}) = -3(\underline{2}) + 4$	Substitute for x.		
= _2	Simplify.		
b. $f(x) = x^2 - 4x - 1$	Write function.		
$f(\underline{2}) = \underline{2}^2 - 4(\underline{2})$) - 1 Substitute for x.		
= <u>-5</u>	Simplify.		
~			

