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Introduction and Background

Stephen Kokoska

Bloomsburg University

Bloomsburg, Pennsylvania

“All exact science is dominated by the idea of approximation.”  - Bertrand Russell

Th e origin of mathematics is probably rooted in the practical need to count (Eves, Burton). 

For example, there is some evidence to suggest that very early peoples may have kept track 

of the number of days since the last full moon. Distinct sounds may have been used initially, 

eventually leading to the use of tally marks or notches. It soon became necessary to use 

other, more permanent symbols as representations of tallies. Number systems were created.

Th ere is evidence the ancient Babylonians, Egyptians, Chinese, and Greeks all worked on 

mathematical problems. For example, around 1950 BCE the Babylonians were able to solve 

some quadratic equations, and about 440 BCE Hippocrates (100 years before Euclid) wrote 

about geometry in his Elements (Burton, pp. 118–119).

As the science of mathematics grew, the problem of approximation became an increasing 

challenge. Th e discovery of irrational numbers and transcendental functions led to the need 

for approximation (Steff ens). Several cultures found a numerical approximation of π. 

Th e Babylonians used 25/8, the Chinese used 3.141014 (in CE 263), and in the Middle Ages 

a Persian computed π to 16 digits. Euler, Laplace, Fourier, and Chebyshev each contributed 

important works involving approximation. 

Despite the prevalence and importance of approximation throughout the history of 

mathematics, very few approximation questions were asked on the AP Calculus Exam 

until the introduction of graphing calculators in 1994–95. Th ere were occasional questions 

concerning a tangent line approximation, a Riemann sum, or an error estimate in a series 

approximation prior to 1995. However, since students were without graphing calculators, 

even these few problems had to result in nice, round numbers.

Calculus reform, the emphasis on conceptual understanding, the desire to solve more 

real-world problems, and powerful graphing calculators now allow us to (teach and) ask 

more challenging, practical approximation problems. Most (more than two-thirds of) AP 

Calculus Exam approximation problems have appeared since 1997. Tangent line (or local 

linear) approximation problems, defi nite integral approximations, and error estimates using 

series appeared before 1995. Questions involving an approximation to a derivative and 

Euler’s method began in 1998.

Below, Larry Riddle has provided a fi ne summary of the approximation problems on both 

the multiple-choice and free-response sections of the AP Calculus Exam. He also provides 
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some of the more recent exam questions in order to illustrate how approximation concepts 

have been tested. Th is summary table and example problem set is an excellent place to start 

in order to prepare your students for the type of approximation problems that might appear 

on the AP Calculus Exam.

Th ere are several expository articles, each focused on a specifi c approximation topic. Th ese 

notes provide essential background material in order to understand and successfully teach 

each concept. In addition, there are four classroom explorations and two instructional 

units. Th e latter are complete lessons concerning specifi c approximation topics used by 

experienced AP Calculus teachers. Teachers should carefully consider the material in this 

Special Focus section and pick and choose from it, reorganize it, and build upon it to create 

classroom experiences that meet the needs of their students.

It is our hope that these articles will help teachers and students better prepare for 

approximation problems on the AP Calculus Exam. Although there is no way to predict 

what type of approximation problem will appear on the next AP Exam, a review of previous 

questions has always been eff ective. Th e AP Calculus community is extremely supportive 

and we believe this material will help our students better understand approximation 

concepts and succeed on the exam.
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Using Approximations in a Variety of AP Questions

Larry Riddle

Agnes Scott College

Decatur, Georgia

Approximation techniques involving derivatives, integrals, and Taylor polynomials have 

been tested on the AP Calculus Exams from the very beginning. With the transition to 

the use of graphing calculators and the changes to the AP Calculus Course Description 

in the mid-1990s, however, the emphasis on approximations became a more fundamental 

component of the course. Th e following table lists various approximation problems from 

the free-response sections and the released multiple-choice sections, arranged according 

to themes listed in the topic outlines for Calculus AB and Calculus BC in the AP Calculus 

Course Description. More than two-thirds of the problems have appeared since 1997.

Tangent Line Approximation (Local Linear Approximation)

Free Response Multiple Choice

1991 AB3

1995 AB3

1998 AB4

1999 BC6

2002 AB6 (over/under estimate?)

2005 AB6

1969 AB/BC 36

1973 AB 44

1997 AB 14

1998 BC 92

Approximating a Derivative Value

Free Response Multiple Choice

1998 AB3 (at point in table or from graph)

2001 AB2/BC2 (at point in table)

2003 AB3 (at point not in table)

2005 AB3/BC3 (at point not in table)

Using Approximations in a Variety of AP Questions
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Approximating a Defi nite Integral

Free Response Multiple Choice

1994 AB6 (trapezoid from function)

1996 AB3/BC3 (trapezoid from function)

1998 AB3 (midpoint from table)

1999 AB3/BC3 (midpoint from table)

2001 AB2/BC2 (trapezoid from table)

2002(B) AB4/BC4 (trapezoid from graph)

2003  AB3 (left  sum from table, unequal 

widths, over/under estimate?)

2003(B) AB3/BC3 (midpoint from table)

2004(B) AB3/BC3 (midpoint from table)

2005   AB3/BC3 (trapezoid from table, 

unequal widths)

2006 AB4/BC4 (midpoint from table)

2006 (B) AB6 (trapezoid from table, 

unequal widths)

1973 AB/BC 42 (trapezoid from function)

1988 BC 18 (trapezoid from function)

1993 AB 36 (trapezoid, left  from function)

1993 BC 40 (Simpson’s rule from function)

1997 AB 89 (trapezoid from table)

1998 AB/BC 9 (estimate from graph)

1998  AB/BC 85 (trapezoid from table, 

unequal widths)

1998 BC 91 (left  from table)

2003  AB/BC 85 (trapezoid, right sum from 

graph, over/under estimate?)

2003  BC 25 (right sum from table, unequal 

widths)

Error Estimates Using Series

Free Response Multiple Choice

1971 BC4 (alternating series or Lagrange EB)

1976 BC7 (Lagrange EB)

1979 BC4 (alternating series or Lagrange EB)

1982 BC5 (alternating series or Lagrange EB)

1984 BC4 (alternating series)

1990 BC5 (alternating series or Lagrange EB)

1994 BC5 (alternating series)

1999 BC4 (Lagrange EB)

2000 BC3 (alternating series)

2003 BC6 (alternating series)

2004 BC6 (Lagrange EB)

2004(B) BC2 (Lagrange EB)

2006(B) BC6 (alternating series)
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Euler’s Method for Differential Equations

Free Response Multiple Choice

1998 BC4

1999 BC6 (over/under estimate?)

2001 BC5

2002 BC5

2005 BC4 (over/under estimate?)

2006 BC5

2003 BC 5

(Th e scarcity of multiple-choice problems means only that those topics did not appear on 

an AP Released Exam. Questions from all of these approximation topics have certainly 

appeared in multiple-choice sections since 1997.)

Approximation techniques may not always yield “nice” answers. With the introduction of 

calculators on the AP Calculus Exam, some line had to be drawn in evaluating the accuracy 

of numerical answers reported in decimal form. Th e three decimal place standard has been 

used every year since 1995. Th e choice of reporting answers to three decimal places was 

really just a compromise; one decimal place would be too few and fi ve decimal places would 

probably be too many. Note that the standard can be overridden in a specifi c problem. 

For example, in an application problem the student could be asked for an answer rounded 

to the nearest whole number. Th e Reading leadership has developed grading procedures 

to minimize the number of points that a student might lose for presentation errors in 

numerical answers.

Th e following problems are taken from recent AP Calculus Exams and illustrate how 

approximation concepts have been tested. Brief solutions are provided in the Appendix. Th e 

complete problems and the Scoring Guidelines are available at AP Central®.

2006 AB4/BC4

t

(seconds)
0 10 20 30 40 50 60 70 80

v(t)

(feet per 

second)

5 14 22 29 35 40 44 47 49
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Rocket A has positive velocity v(t) aft er being launched upward from an initial height of 0 

feet at time t � 0 seconds. Th e velocity of the rocket is recorded for selected values of t over 

the interval 0 � t � 80 seconds, as shown in the table above.

(b)  Using correct units, explain the meaning of   � 
10

  
70

 v (t)dt in terms of the rocket’s fl ight. Use a 

midpoint Riemann sum with 3 subintervals of equal length to approximate   � 
10

  
70

 v (t)dt

Comments:

Students needed to pick out the correct intervals and the midpoints of those intervals to use 

for the midpoint Riemann sum approximation since the limits on the defi nite integral did 

not include the full range of the data given in the table. Equally important in this problem 

was the knowledge about what the approximation represented, including the correct units, 

not just the ability to do the computation. 

A plot of the data suggests that the graph of v(t) is concave down. Th is is also suggested 

by the diff erence quotients between successive data points (since they are decreasing). 

Assuming that v(t) is concave down, another natural question that could have been asked 

would have been whether the midpoint approximation overestimates or underestimates the 

actual value of the defi nite integral.

2005 AB3/BC3

Distance

x (cm)
0 1 5 6 8

Temperature

T(x) (°C)
100 93 70 62 55

A metal wire of length 8 centimeters (cm) is heated at one end. Th e table above gives selected 

values of the temperature T(x) in degrees Celsius (°C ), of the wire x cm from the heated end.

Th e function T is decreasing and twice diff erentiable.

 (a) Estimate T�(7). Show the work that leads to your answer. Indicate units of measure.

 (b)   Write an integral expression in terms of T(x) for the average temperature of the wire. 
Estimate the average temperature of the wire using a trapezoidal sum with the four 
subintervals indicated by the data in the table. Indicate units of measure.

Comments:

In part (a) the students were asked to approximate the value of the derivative at a point that 

is not in the table. Students were expected to fi nd the “best” estimate for the derivative at 

x � 7 by using a symmetric diff erence quotient with x � 6 and x � 8. 
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Th e subintervals in the table are not of equal length. Th e trapezoid rule can therefore not be 

used. Students needed to either add the areas of the four individual trapezoids, or average 

the left  and right Riemann sums. In these types of problems it is also important for students 

to show the setup for the computations, particularly on the calculator section of the exam.

2005 BC4

Consider the diff erential equation   
dy

 __ 
dx

   � 2x � y.

 (c)  Let y � f (x) be the particular solution to the given differential equation with the initial 
condition f (0) � 1. Use Euler’s method, starting at x � 0 with two steps of equal size, 
to approximate f (�0.4). Show the work that leads to your answer.

 (d)  Find   
 d  2 y

 ___ 
d x  2  

   in terms of x and y. Determine whether the approximation found in part (c) is 
less than or greater than f (�0.4). Explain your reasoning.

Comments:

Notice that Euler’s method is going in “backwards” steps, so �x � �0.2. Students need 

experience with doing the computations for both directions.

Th e determination of whether the approximation is less than or greater than the actual value 

is based on the sign of the second derivative over an interval, not just at the starting point. 

Here   
 d  2 y

 ___ 
 dx  2 

   � 2 � 2x � y. Th is is positive for x � 0 and y � 0. Th us the tangent lines will lie 

underneath the graphs of solution curves in this quadrant. For more discussion about this 

problem, see Steve Greenfi eld’s article “Don’t Forget the Diff erential Equation: Finishing 

2005 BC4,” which can be found under the Teaching Resource Materials on the AP Calculus 

AB and BC Exam home pages at AP Central.

2004 (Form B) BC2

Let f   be a function having derivatives of all orders for all real numbers. Th e third-degree 

Taylor polynomial for f  about x � 2 is given by T(x) � 7 � 9(x � 2 )  2  � 3(x � 2 )  3 .

 (c)  Use T(x) to fi nd an approximation for f (0). Is there enough information given to deter-
mine whether f has a critical point at x � 0 ? If not, explain why not. If so, determine 
whether f (0) is a relative maximum, a relative minimum, or neither, and justify your 
answer.

 (d)  The fourth derivative of f satisfi es the inequality  �  f   (4) (x) �  � 6 for all x in the closed 
interval [0, 2]. Use the Lagrange error bound on the approximation to f (0) found in 
part (c) to explain why f (0) is negative.

Comments:

Th e Taylor polynomial approximates the function near x � 2. However, T(x) gives exact 

information only at x � 2.

Using Approximations in a Variety of AP Questions
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Th e Lagrange error bound in part (d) is   max          0�x�2   �  f   (4) (x) �   (2�0 )  4 
 _____ 

4!
   � 6 ·   16

 __ 
24

   � 4. 

So  � f (0) � T(0) � � 4 and therefore  f (0) � T(0) � 4 � �1 	 0.

2003 AB3

Th e rate of fuel consumption, in gallons per minute, recorded during an airplane fl ight is 

given by a twice-diff erentiable and strictly increasing function R of time t. Th e graph of R 

and a table of selected values of R(t) for the time interval 0 � t � 90 minutes are shown 

above.

 (a)  Use data from the table to fi nd an approximation for R�(45). Show the computations 
that led to your answer. Indicate units of measure.

 (c)  Approximate the value of   � 
0
  90 R (t)dt using a left Riemann sum with the fi ve subintervals 

indicated by the data in the table. Is this numerical approximation less than the value 
of   � 

0
  90 R (t)dt? Explain your reasoning.

Comments:

Here is another approximation of a derivative at a point not in the table. A symmetric 

diff erence quotient based on t � 40 and t � 50 gives the best estimate. Th is is also supported 

by the graph, which shows that the slope of the secant line between 40 and 50 is a good 

approximation to the tangent line at t � 45.

Th e subintervals in the table are of unequal lengths, so care must be taken when computing 

the areas of each left  rectangle. It is also important for students to know whether a left  or 

right Riemann sum is too large or too small when the graph of the function is increasing or 

decreasing. 

2003 BC6

Th e function f  is defi ned by the power series

 f (x) �   � 
n�0

   



       
 (�1)  n   x  2n 

 _______ 
(2n � 1)!

   � 1 �    x  2  __ 
3!

   �    x  4  __ 
5!

   �    x  6  __ 
7!

   � … �   
 (�1)  n   x  2n 

 _______ 
(2n � 1)!

   � …
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for all real numbers x.

 (b) Show that 1 �   1 __ 3!   approximates  f (1) with error less than   1 ___ 100  .

Comments:

Th e series with x � 1 is an alternating series whose terms are decreasing in absolute value 

with limit 0. Th us, the error is less than the fi rst omitted term, 1/5! � 1/120. It is important 

for students to recognize that all three conditions on the terms of the series are needed in 

order to use the usual error bound for alternating series. It is not suffi  cient to simply state 

that the series is alternating.

2002 AB6

x �1.5 �1.0 �0.5    0 0.5 1.0 1.5

f (x) �1 �4 �6 �7 �6 �4 �1

f �(x) �7 �5 �3    0 3 5 7

Let f  be a function that is diff erentiable for all real numbers. Th e table above gives the values 

of f and its derivative f � for selected points x in the closed interval �1.5 � x � 1.5. Th e 

second derivative of f  has the property that f �(x) � 0 for �1.5 � x � 1.5.

 (b)  Write an equation of the line tangent to the graph of f at the point where x � 1. Use this 
line to approximate the value of f (1.2). Is this approximation greater than or less than 
the actual value of f (1.2)? Give a reason for your answer.

Comments:

Th e approximation is less than the actual value because the graph of f  is concave up over the 

entire interval from x � 1 to x � 1.2. It is not suffi  cient to check concavity just at x � 1. Th is 

property is due to the fact that

 f (b) � (f (a) � f �(a)(x � a)) �   1 _ 
2
   f �(c) (b � a)  2  for some c between a and b

or, geometrically, that the tangent line lies below the graph when the graph is concave up.

1997 AB 14 (Multiple Choice)

Let f  be a diff erentiable function such that f (3) � 2 and f �(3) � 5. If the tangent line to the 

graph of f  at x � 3 is used to fi nd an approximation to a zero of f , that approximation is

(A)  0.4 (B)  0.5 (C)  2.6 (D)  3.4 (E)  5.5

Using Approximations in a Variety of AP Questions
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Comments:

Newton’s method is no longer part of the AP Course Description. Th is simple application of 

the tangent line approximation, however, is the basic idea of that method. Th e tangent line 

approximation is L(x) � 5(x � 3) � 2, and so L(x) � 0 when x = 2.6. Th e answer is (C).

1998 BC 92 (Multiple Choice)

Let f  be the function given by f (x) �  x  2  � 2x � 3. Th e tangent line to the graph of  f   at 

x � 2 is used to approximate values of f (x). Which of the following is the greatest value of 

x for which the error resulting from this tangent line approximation is less than 0.5?

(A)  2.4 (B)  2.5 (C)  2.6 (D)  2.7 (E)  2.8

Comments:

f �(x) � 2x � 2, f �(2) � 2, and f (2) � 3, so an equation for the tangent line is 

y � 2x � 1. Th e diff erence between the function and the tangent line is represented by  

(x � 2)  2 . Solve  (x � 2)  2  < 0.5. Th is inequality is satisfi ed for all x such that 2 �  �

 0.5   	 x 	 

2 �  �

 0.5  , or 1.293 	 x 	 2.707. Th us, the largest value in the list that satisfi es the inequality 

is 2.7, and the correct answer is (D). One could also investigate this problem graphically by 

graphing the function that is the diff erence between the parabola and the tangent line.

2003 AB/BC 85  (Multiple Choice)

If a trapezoidal sum over approximates  � 
0
  
4
   f (x)dx, and a right Riemann sum under 

approximates  � 
0
  
4
   f (x)dx, which of the following could be the graph of y � f (x)?
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Comments:

If the graph is decreasing, then Right(n) 	   � 
a
  b   f (x)dx 	 Left (n) for the right Riemann and 

left  Riemann sums using n subintervals.

If the graph is concave up, then Mid(n) 	  � 
a
  b   f (x)dx 	 Trap(n) for the trapezoid sum and 

the midpoint Riemann sum using n subintervals.

Graph (A) is decreasing and concave up, and therefore could be the graph of y � f (x).

If the graph is increasing or concave down, the respective inequalities are reversed.

Appendix: 

Free-Response Solutions

For more details, see the Scoring Guidelines for the AB Exams and the BC Exams at AP 

Central.

2006 AB4/BC4

Since the velocity is positive,   � 
10

  
70

 v (t)dt represents the distance, in feet, traveled by rocket 

A from t � 10 seconds to t � 70 seconds. A midpoint Riemann sum is 

20[v(20) � v(40) � v(60)] � 20[22 � 35 � 44] � 2020 ft .

2005 AB3/BC3

 (a)   
T (8) � T (6)

 __________ 
8 � 6 

   �s  55 � 62 ______ 2   � �s  7 _ 2   �C/cm

 (b)   1 __ 
8
     � 

0
  8 T (x)dx 

Trapezoidal approximation for   � 
0
  
8
   T(x)dx:

  A �   100 � 93 _______ 2    · 1 �   93 � 70 ______ 2    · 4 �   70 � 62 ______ 2    · 1 �   62 � 55 ______ 2    · 2

Average temperature �   1 __ 
8

   A � 75.6875�C

2005 BC4

 (c) f (�0.2) � f (0) � f �(0)(�0.2) � 1 � (�1)(�0.2) � 1.2

  f (�0.4) � f (�0.2) � f �(�0.2)(�0.2) � 1.2 � (�1.6)(�0.2) � 1.52

 (d)   
 d  2 y

 ___ 
 dx  2 

   � 2 �s  
dy

 __ 
dx

   � 2 �2x � y

Using Approximations in a Variety of AP Questions
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 d  2 y

 ___ 
 dx  2 

    is positive in quadrant II because x 	 0 and y � 0 Th erefore 1.52 	 f (�0.4) 

since all solution curves in quadrant II are concave up.

2004 (Form B) BC2

 (c) f (0) � T (0) � �5

   It is not possible to determine if f  has a critical point at x � 0 because T (x) gives exact 
information only at x � 2.

 (d)  The Lagrange error bound is   max          0�x�2   �  f   (4) (x) �     (2 � 0)  4 
 ______ 4!   � 6 ·   16 __ 24   � 4. So  � f (0) � T (0) �  � 4 

and therefore f (0) � T (0) � 4 � �1 	 0.

2003 AB3

 (a) R�(45) �   R(50) � R(40) ___________ 
50 � 40

   �   55 � 40 ______ 10   � 1.5 gal/ min  2 

 (c)   � 
0
  90 R (t)dt � (30)(20) � (10)(30) � (10)(40) � (20)(55) � (20)(65) � 3700

  Yes, this approximation is less because the graph of R is increasing on the interval.

2003 BC6

(b) f (1) � 1 �   1 __ 
3!

   �   1 __ 
5!

   �   1 __ 
7!

   � … �   
 (�1)  n 

 _______ 
(2n � 1)!

    � … 

  Th is is an alternating series whose terms decrease in absolute value with limit 0. 

Th us, the error is less than the fi rst omitted term, so 

  � f (1) �   � 1 �   1 __ 
3!

    �  �  �   1 __ 
5!

   �   1
 ___ 

120
   	   1

 ___ 
100

  .

2002 AB6

(b) y � 5(x � 1) �4

 f (1.2) � 5(0.2) �4 ��3

  Th e approximation is less than f (1.2) because the graph of f  is concave up on the 

interval 1 	 x 	 1.2.



 15

Approximating Derivative Values

Monique Morton

Woodrow Wilson Senior High School

Washington, D.C. 

A numerical approximation to the derivative of a function at a point can be obtained in two 

ways: geometrically using the slope of the tangent line or by using a diff erence quotient. 

On the AP Calculus Examination in recent years (e.g., 2005, 2003), students have been 

expected to approximate the derivative at a point given a table of function values. Students 

were expected to use a diff erence quotient to answer these questions. So students must be 

provided with the tools to approach problems that are presented as data tables as well as 

those with analytically defi ned functions.

Exploration: Zooming In

Th e zooming in exploration gives students experience with the idea of derivative as the slope 

of the curve. Aft er completing this exploration students will be able to estimate the slope 

of the function (the derivative) at a point by zooming in on that point. Students will also 

see examples where the slope (the derivative) of a function at a point is not defi ned. Th is 

approach can also be used to reinforce a student’s intuitive understanding of limits. Th is 

exploration should be scheduled before derivatives are formally defi ned in class.

Students are expected to have graphing calculators that graph functions in an arbitrary 

viewing window. Zooming in can be accomplished by adjusting the viewing window or 

using built-in zooming features of the graphing calculator. 

1. Graph the function f (x) �  x  4  � 10 x  2  � 3x. Zoom in on the point (3, 0) until the graph 

looks like a straight line. Pick a point on the curve other than the point (3, 0), but 

close to (3, 0), and estimate the coordinates of the point, keeping at least three decimal 

places. Calculate the slope of the line through these two points. Use this information to 

complete the first row of the table in Problem 2.

Th e number computed above is an approximation to the slope of the function 

f (x) �  x  4  � 1 0x  2  � 3x at the point (3, 0). Th is slope is also called the derivative of f at 

x � 3, and is denoted f �(3).

Approximating Derivative Values
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2. Use zooming in to estimate the slope of the following functions at the specified points 

and complete the table below. 

Function Given Point Chosen Point Calculated slope

f (x) �  x  4  � 10 x  2  � 3x (3, 0)

f (x) �  x  4  � 6 x  2 (1, �5)

f (x) � cos x (0, 1)

f (x) � cos x   �   � __ 
2
  , 0 � 

f (x) �  (x � 1)    
1
 _ 

3
   (2, 1)

This slope of the function f at the point (a, f (a)) is also called the derivative of f at a, and is 
denoted f �(a). 

Compare your calculated slopes with others in your group and give an estimate of the 

derivatives at the indicated points.

Function Given Point a Derivate Value f �(a)

f (x) �  x  4  � 10 x  2  � 3x 3

f (x) �  x  4  � 6 x  2 1

f (x) � cos x 0

f (x) � cos x   � _ 
2
  

f (x) �  (x � 1)    
1
 _ 

3
   2

3. Graph f (x) �  (x � 1)    
1
 _ 

3
    again. This time, zoom in on (1, 0). Describe what you see. By 

examining your graphs, explain why the slope is not a finite real number at x � 1. For 

this function, conclude that f �(1) does not exist.

4. Graph the function f (x) �  �  x  4  � 6 x  2  � . By looking at the graph and zooming in on the 

points you select, decide at which point the function f  has a derivative and at which 

points it does not. Support your answers with appropriate sketches.

5. What have you learned as a result of completing this lab that you did not know before?

Teacher Notes

Th is exploration is adapted from “Lab 3: Zooming In” in Learning by Discovery: A Lab 

Manual for Calculus (Anta Solow, editor), Volume I in the Mathematical Association of 

America Resources for Calculus Collection (MAA Notes 27).
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Possible solutions to the tables:

Function Given Point Chosen Point Calculated slope

f (x) �  x  4  � 10 x  2  � 3x (3, 0) (3.001..., 0.079...) 51.0687

f (x) �  x  4  � 6 x  2 (1, �5) (1.0062, �5.0499) �7.9998

f (x) � cos x (0, 1) (0.0015, 0.9999) 0.0007

f (x) � cos x   �   � __ 
2
  , 0 � (1.575, �0.0042) �0.9999

f (x) �  (x � 1)    
1
 _ 

3
   (2, 1) (2.00625, 1.0020) 0.3326

Function Given Point x � a Derivate Value f �(a)

f (x) �  x  4  � 10 x  2  � 3x 3    51

f (x) �  x  4  � 6 x  2 1 �8

f (x) � cos x 0     0

f (x) � cos x   � _ 
2
  �1

f (x) �  (x � 1)    
1
 _ 

3
   2 1/3

When students zoom in on the point (1, 0), the graph should start to look like a vertical line. 

Because the slope of a vertical line is undefi ned, the derivative is not a fi nite real number.

Students should notice that the graph does not have derivatives at x � � �

 6  . When you 

zoom in on these x-values, the graph is not locally linear, i.e., it never looks like a line.

Approximating Derivative Values
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Estimating Derivatives Numerically

Mark Howell

Gonzaga High School

Arlington, Virginia

Most students come to AP Calculus with a strong understanding of linear functions. Th ey 

can fi nd the slope of a line given its equation or given two points on the graph of the line. 

Th ey likely understand that lines have constant slope. Some may even have used language 

that includes the phrase rate of change. Calculus teachers, therefore, ought to leverage that 

understanding when they introduce the derivative to students.

In Algebra 1, students are taught that the slope of a line through points ( x  
1
 ,  y  

1
 ) and ( x  

2
 ,  y  

2
 ) is 

given by 

slope �   
 y  

2
  �  y  

1
 
 ______  x  

2
  �  x  

1
    ,

the change in the dependent variable divided by the change in the independent variable. 

Using this idea as a starting point, in calculus, students see that the average rate of change of 

a function f  on a closed interval, [a, b], is given by

average rate of change �    
f (b) � f (a)

 ________ 
b � a

  ,

the change in the function outputs divided by the change in the inputs. Note that the 

average rate of change of f  on [a, b] is the slope of the line through the two points   � a, f (a) �  
and   � b, f (b) �  (sometimes called the secant line). 

Th e landscape changes dramatically in calculus! Th e idea of limit allows us to determine 

instantaneous rates of change. In fact, the derivative of a function at a point is defi ned as the 

limit of an average rate of change:

f �(a) �   lim         x → a     
f (x) � f (a)

 ________ x � a  

An illustration like the following, which appears in nearly every calculus textbook, gives 

a geometric interpretation of the result:
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Using a scientifi c or graphing calculator, students can approximate a derivative by evaluating 

an average rate of change over a suitably small interval. For example, the derivative of 

f (x) � sin x at x � 0 is approximately   
sin(.001) � sin(0)

  _____________ 
.001 � 0

   � 0.999999833.

Aft er students have learned about the derivative as a function, and how to diff erentiate basic 

functions, try asking them this question:

In radian mode, use your calculator to graph y1(x) �   
sin(x � .001) � sin(x)

  ________________ 
.001

   in a decimal 

window. Describe the resulting graph, and explain why it looks the way it does.

Since at every value of x, the expression    
sin(x � .001) � sin(x)

  ________________ 
.001

    approximates the derivative of 

sin(x), the graph looks like y � cos(x). 

Here’s the calculator graph:

So, how good a job does y1(x) �   
sin(x � .001) � sin(x)

  ________________ 
.001

   do of approximating the derivative of 

sin(x)? Since at every value of x, we are using the slope of a secant line to approximate the 

slope of a tangent line, the straighter the graph of y � sin(x), the better the approximation 

ought to be. How do we measure the straightness of a graph? Along a straight line, slope 

does not change. From a calculus point of view, the rate of change of slope with respect to 

x is 0 for linear functions. In other words, the second derivative of the function is zero. It 

makes sense, then, that the closer the second derivative is to zero, the better the diff erence 

quotient should do in approximating the derivative. It’s easy to investigate this on a graphing 

calculator by plotting the diff erence between the diff erence quotient and cos(x):

Amazing! Th e error has the shape of a negative sine graph, the second derivative of sin(x)! 

Th at is, the larger the second derivative, the greater the change of slope of our function, and 

the less the slope of a secant line approximates the slope of a tangent line. In fact, if we divide 

this error by the second derivative, �sin(x), we get a function that is close to constant.

Estimating Derivatives Numerically
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Cool!

How do calculators approximate derivatives? In the absence of a computer algebra system 

that calculates derivatives symbolically, most machines use a diff erence quotient to 

approximate. However, the method used is a symmetric diff erence quotient that spans the 

point where the derivative is being approximated. Th e approximation is 

f �(a) 	    
f (a � .001) � f (a � .001)

  __________________ 
.002

  .

Geometrically, it’s using the slope of a secant line that straddles the point where the 

derivative is being approximated:

Th e symmetric diff erence quotient is used to approximate the derivative.

It is just such a symmetric diff erence quotient that functions like nDeriv or nder on graphing 

calculators use. Students should understand and be wary of these functions, since they can 

give unreliable results at or near points where a function is not diff erentiable. For example, 

check out the value of nDeriv for the absolute function at x � 0:

Once you know that the machine is using a symmetric diff erence quotient, the reason 

behind this error becomes clear.

Th e symmetric diff erence quotient is 0 for the absolute value function at x � 0.
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In fact, nDeriv will give a result of 0 for any even function at x � 0! Here’s another example:

You might guess that the only points to worry about when using the symmetric diff erence 

quotient are places where the function is not diff erentiable. But the situation is even more 

hazardous than that. Consider the following examples:

Th e default h used by the calculator is 0.001. Th us, if you try to evaluate nDeriv anywhere 

within .001 of a point where a function fails to be diff erentiable, the result is unreliable. Th e 

second result above comes from evaluating   
  1

 _________ 
.0009 � .001

   �   1
 _________ 

.0009 � .001
   
  __________________ 

.002
   .

Of course, a one-sided diff erence quotient is also prone to error near points where a 

function’s derivative fails to exist. Why did the calculator manufacturers choose the 

symmetric diff erence quotient over a one-sided diff erence quotient? Th e answer lies in the 

behavior of the error for each approximation. 

Note: Th is idea of average rate of change, really a precalculus notion, has been tested oft en on 

recent AP Exams. (See 2005, AB5 BC5, 2004 AB1 BC1, 2003 Form B AB5 BC5, 1998 AB3, 

and 1997 AB1 for some examples.)  

Exploration: Errors in the Defi nitions of Derivative at a Point  

Here are function defi nitions for an activity exploring the behavior in two common 

approximations to the derivative at a point. In Y1, we defi ne the function whose derivative 

we are approximating. In Y2, we have the one-sided diff erence quotient approximation for 

Y1�(A), and in Y3 we have the symmetric diff erence quotient approximation.

Estimating Derivatives Numerically
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Note that the calculator’s independent variable in Function Mode is always X, and that here 

it is fi lling the role of the step size from the defi nition of derivative (which is usually named h). 

What we really care about is how the errors in these approximations behave. So, in Y4, we 

put the exact value of the derivative, Y1�(A). Th en, in Y5 and Y6, we put the errors from 

using the one-sided and the symmetric diff erence quotient approximations, respectively. 

Only Y5 and Y6 are selected for graphing. 

Store any real number in the variable A (0.5 was chosen for the example here). 

In the decimal window, there are no apparent diff erences between the behaviors of the two 

approximations. But zooming in with a degree-two power zoom (under which functions 

that exhibit quadratic behavior have graphs that remain unchanged—see the appendix for an 

explanation of power zooming) is most revealing!

Remember that we are graphing the error in using either the diff erence quotient (DQ) or 

the symmetric diff erence quotient (SDQ) to approximate the derivative of f (x) � arctan(x) 

at a � 1/2 as a function of h. Th e results are astounding! Th e error from using the DQ 

appears to be linear, and the graph gets steeper as we perform a degree-two power zoom. Th e 

error from using the SDQ appears to behave like a quadratic. Its shape remains essentially 

unchanged as we zoom in with a degree-two power zoom. 
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You can explore this result numerically by looking at a table of values near x � 0. 

Note that Y5, the DQ errors, has a constant diff erence of about 0.0003, indicating linearity. 

Th e rate of change of Y5(X) with respect to X is constant, and this constant is the slope of the 

line containing the ordered pairs (X,Y5(X)). For Y6 (the SDQ errors) the second diff erences 

are constant, indicating a quadratic. Th at is, the rate of change of the rate of change is 

constant, and this happens with degree-two polynomials (whose second derivatives are 

constant).

You can verify this result by doing some list operations. Consider the following the calculator 

screens:

You can go back and redo this activity with nearly any function in Y1, and with any value 

stored in the variable A where Y1 has a derivative. You also need to put the exact derivative 

value in Y4. It’s needed to evaluate the error. Th e amazing thing is that for nearly any 

function and nearly any point, the results are the same. Eventually, the error in the SDQ 

behaves like a quadratic, and the error in the DQ behaves like a line! (It’s possible that the 

DQ errors could behave like a higher-degree polynomial, due to symmetry. For example, 

the DQ errors for f (x) � sin(x) will behave like a quadratic.) Of course, we pref er error 

functions that behave with a higher degree, since higher-degree power functions stay close to 

zero longer. Th at’s why the calculators use the symmetric diff erence quotient! 

Chances are you would use the symmetric diff erence if asked to compute a rate of change 

in real life. For instance, if you knew your odometer readings two hours, three hours, and 

four hours into a long road trip were, respectively, 100 miles, 170 miles, and 230 miles, and 

wanted to estimate your velocity (speed) at three hours, you most likely would estimate 

it as (230 � 100)/2, the symmetric diff erence, rather than as (230 � 170)/1, a one-sided 

diff erence. In recent AP Exams, such data has been provided in table form, with students 

asked to estimate the velocity or other rate of change or derivative from the data. In these 

problems, students are expected to give the best estimate possible from the data, which 

generally is the symmetric diff erence. Examples include 2005 AB3/BC3, part (a), and 2003 

AB3 part (a) (see Using Approximations in a Variety of AP Questions).

Note: Th ese activities were inspired by a talk by Don Kreider at TICAP in the early 1990s. 

Estimating Derivatives Numerically
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Appendix: Power Zooming 

If you zoom in to the graph of any linear function with equal horizontal and vertical “zoom 

factors,” the shape of your graph remains unchanged. Try it! First, defi ne any linear function, 

and set a viewing window where you can see its graph. Draw the graph. Check that your 

zoom factors are equal. On the TI-83, you do this from the ZOOM Memory menu; on the 

TI-86, from the ZFACT menu; and on the TI-89, from the ZOOM … Set Factors … menu. 

Press Trace to position the cursor on the pixel halfway across the graph, then zoom in to the 

graph repeatedly. You should see no change in the slope of the line as you zoom in. Look at 

the screens below for an example:

Now, suppose you wanted to zoom in on a parabola (for example, y �  x  2 ), and see the same 

eff ect: the shape of the graph stays the same as you zoom in. Start at the decimal window 

(Zoom 4 on the TI-83 and �89, ZOOM … ZDECM on the �86). Th en try zooming in to 

the graph of y �  x  2  with equal zoom factors at (0, 0). You should see the graph fl atten out.
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Now, change the zoom factors so that the y factor is the square of the x factor. For example, 

try zoom factors of XFact � 4 and YFact � 16. Start again at the decimal window, and try 

zooming in with these factors. You should see the graph’s shape remain unchanged.

Th is zooming procedure is called a power zoom of degree two. Th e degree is two because the 

y-factor is the square of the x-factor. Now, try zooming in to your graph of y �  x  2  with a 

degree-three power zoom. For example, set XFact � 2 and YFact � 8. Start again from the 

decimal window, and zoom in a few times with this degree-three power zoom. Th is time, 

you should see the graph get steeper.

Estimating Derivatives Numerically
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Let’s see if these observations might generalize. Clear out Y1, defi ne Y2 � X^2, Y3 � X^3, 

and Y4 � X^4, and set your viewing window to [�5, 5] horizontally by [�25, 25] vertically. 

Leave your zoom factors set for a degree-three power zoom. You might also want to set a 

diff erent graphing style for Y2, Y3, and Y4 so you can tell the graphs apart. Zoom in a few 

times to the graph of these three functions. 

You should see that the graph of y �  x  3  remained unchanged, the graph of y �  x  2  got steeper, 

and the graph of y �  x  4  fl attened out.

In general, zooming in at the origin to the graph of y �  x  n  with a power zoom of degree p 

will cause the graph to get steeper if n 	 p, stay the same shape if n � p, and fl atten out if 

n � p. Th e same eff ect will be seen if you zoom in to the graph of y � (x � a )  n  at the point 

(a, 0). 

Of course, in all these examples, we already know the degree of each function considered. 

Power zooming can be used to discover the degree of an unknown function. For example, 

if you zoomed in at a zero to a function with a degree-two power zoom, and the graph got 

steeper, you’d know it was exhibiting behavior that was less than degree two. Similarly, if 

the graph fl attened out under a degree-two power zoom, then the degree behavior must 

be greater than two. For some intriguing examples, see the exploration “Errors in the 

Defi nitions of Derivative at a Point” and the two explorations in the article “Th e Tangent 

Line as ‘Th e Best’ Linear Approximation” for some intriguing examples.

Note: I fi rst saw the idea of power zooming in the calculus textbook by Dick & Patton.
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Approximating Defi nite Integrals:
Riemann Sums as a Tool for Approximation of Areas

John Jensen

Rio Salado College

Tempe, Arizona

Ruth Dover

Illinois Mathematics and Science Academy

Aurora, Illinois

It is a common activity for elementary school students to estimate 

the area of a circle or other nonpolygonal region by superimposing 

a regular rectilinear grid on the surface and counting the number of 

entire squares within the boundary of the region. (See the fi gure to 

the right.) Th e approximation of the area bounded by a curve in the 

plane by using Riemann sums involves a similar idea. By summing the 

areas of a collection of rectangles (whose dimensions can be readily 

obtained), we can make a reasonable approximation to the area bounded by a curve (the x-

axis, and the lines y � a and y � b). In addition, we can improve the estimate by increasing 

the number of rectangles used in the approximation. 

Consider the graph of the function f (x) �  x  2  � 1 as shown below. Suppose we wish to 

estimate the area beneath the graph of f (x) and above the x-axis from x � 1 to x � 3. Th e 

fi gure below illustrates one such estimate, called the left  Riemann sum or left  rectangular sum. 

Th is is formed by using the left -hand endpoint of each subinterval and the corresponding 

y value to determine the height of each rectangle.

If we regard each subinterval as having length Δx, where Δx �1/2, then the approximation of 

the area is:

Approximating Defi nite Integrals
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  A 	 f (1) ·   1 _ 
2
   � f   �   3 _ 

2
   �  ·   1 _ 

2
   � f (2) ·   1 _ 

2
   � f   �   5 _ 

2
   �  ·   1 _ 

2
   

      � 2 ·   1 _ 
2
   �   13

 __ 
4
   ·   1 _ 

2
   � 5 ·   1 _ 

2
   �   29

 __ 
4
   ·   1 _ 

2
  

      �   35 __ 
4
   � 8.75

It is fairly easy to see from the graph that this approximation is an underestimate. Th ere are 

pieces of the required area above each of the four rectangles shown. Further, one can see that 

when the interval is evenly subdivided, the corresponding segments of the curve with the 

greatest slope result in the greatest amount of area that is unaccounted for. In the example 

above, there is more area unaccounted for under the curve but above the rectangle from 

x � 2.5 to x � 3 than there is above the rectangle from x � 1 to x � 1.5. 

Now, consider the right Riemann sum or right rectangular sum for the same region. Th is 

time, each rectangle is formed by using the right-hand endpoint of each subinterval and the 

corresponding y value to determine the height of each rectangle.

Once again, if we regard each subinterval as having length Δx, where Δx �1/2, then the 

approximation of area is:

  A 	 f   �   3 _ 
2
   �  ·   1 _ 

2
   � f (2) ·   1 _ 

2
   � f   �   5 _ 

2
   �  ·   1 _ 

2
    � f (3) ·   1 _ 

2
  

      �   13
 __ 

4
   ·   1 _ 

2
   � 5 ·   1 _ 

2
   �   29

 __ 
4
   ·   1 _ 

2
   � 10 ·   1 _ 

2
  

      �   51 __ 
4
   � 12.75

It is also clear that this right Riemann sum overestimates the area bounded by the curve 

and the x-axis from x � 1 to x � 3. Once again, the rectangles on the rightmost end of the 

interval contribute the most to the overestimation. Th e left  and right Riemann sum estimates 

tell us that 8.75 	 A 	 12.75.

It is convenient for us to see the underestimate and overestimate together to get some 

sense of the range of this approximation (see fi gure below). To the right of the graph, 

the individual diff erences of the left  and right rectangles are pictured in a stack. Because 

the base of this stack is Δx and the height is f (3) � f (1) � 8, the area of this assembled 
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rectangle is [ f (3) � f (1)] · Δx � 4. As we increase the number of rectangles, we improve 

the approximation. Because an increase in the number of rectangles also means that each 

rectangle is narrower, the entire stack becomes narrower as Δx → 0, which is a slightly 

diff erent way of seeing the result that

  lim         
n→


     � 
i�1

  
n

    f ( x  
1
 ) · Δx �   � 

a

   
b

  f  (x)dx where the expression   � 
a

   
b

  f  (x)dx is a defi nite integral that represents 

the exact area bounded by the curve.

Although we could establish rules to determine whether a left  or right Riemann sum for an 

increasing or decreasing function will overestimate or underestimate the actual area, it is 

much more instructive to use a sketch of the graph to reach a conclusion. It is also important 

to note that concavity does not aff ect this issue. AP Calculus problems frequently ask 

students to determine whether the approximation is too high or too low, so it is important to 

consider the graph in order to understand this idea clearly.

Furthermore, there are many cases where it is not clear whether an approximation exceeds 

or falls short of the actual value. For example, a right Riemann sum applied to the curve 

y � .5sin(.5 x  2 ) � 1 (as shown below) leaves us with an unclear picture about whether the 

sum underestimates or overestimates the actual area (under the curve, above the x-axis, 

or between the lines x � 0 and x � 5). We might actually discover that the left  or right 

sum comes quite close to the true area because there is a mixture of overestimation and 

underestimation. 

Approximating Defi nite Integrals
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Th is suggests a third approach for estimating areas using Riemann sums, the midpoint 

Riemann sum. When curves are increasing or decreasing over their domains, this is oft en the 

preferred method of estimating the area because it tends to balance overage and underage. 

Looking at the curve g (x) � 4 � .25 x  2  on the interval [0, 4], we see that it is decreasing. 

Consider the midpoint Riemann sum with four subintervals.

Th e approximation using a midpoint sum is:

  A 	 g (.5) � 1 � g (1.5) � 1 � g (2.5) � 1 � g (3.5) � 1

      � 3.9375 � 3.4375 � 2.4375 � .9375

      � 10.75

Th e advantage of the midpoint approach in cases like these is evident once we see the 

graph with its associated rectangles. Plainly, the midpoint rectangles tend to balance the 

overestimates and underestimates. Students oft en mistakenly believe that this balance is 

perfect and that the midpoint approximation is exact. Th is provides a great opportunity to 

discuss the role that concavity plays in approximation by Riemann sums.

In the previous example, the midpoint Riemann sum applied to the function f (x) �  x  2  � 1 

over the interval [1, 3] provides an estimate of 10.63. While this estimate lies between the 

left  and right approximations, it is not the average (arithmetic mean) of the left  and right 

approximations, which is 10.75. It is instead equivalent to an approximation called the 

Trapezoidal Sum, which will be discussed later in this article.

Summary of Riemann Sums

We have three powerful tools for the approximation of areas under a curve in a plane region 

using rectangles. To summarize symbolically, we need to introduce a little vocabulary and 

notation.

We begin by partitioning the closed interval [a, b] in question into n subintervals with 

endpoints a �  x  
0
 ,  x  

1
 ,  x  

2
 , … ,  x  

n
  � b. If all of the subintervals are formed with equal length, 
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then Δx �   b � a
 ____ n  , and we oft en express  x  

i
  � a � i � Δx, i � 0, 1, 2, … , n. Th is leads to the 

following symbolic representations.

LEFT RIEMANN SUM:

 A  
L
  	   � 

i�0
   

n�1

   f ( x  
i
 ) � �x �   � 

i�1
   

n

    f ( x  
i�1

 ) � �x � f ( x  
0
 ) � �x � f ( x  

1
 ) � �x � … � f ( x  

n�1
 ) � �x

RIGHT RIEMANN SUM:

 A  
R
  	   � 

i�1
   

n

    f ( x  
i
 ) � �x � f ( x  

1
 ) � �x � f ( x  

2
 ) � �x � … � f ( x  

n
 ) � �x

MIDPOINT RIEMANN SUM:

 A  
M

  	   � 
i�0

   
n�1

   f   �    x  
i
  �  x  

i�1
 
 ______ 

2
   �  � �x �   � 

i�1
   

n

    f   �    x  
i�1

  �  x  
i
 
 _______ 

2
   �  � �x 

The Trapezoidal Rule

Th e fact that most approximation schemes using Riemann sums leave small, roughly 

triangular- shaped areas either within or outside the region in question oft en prompts 

students to think of a means of including those areas by approximating them with triangles 

and somehow appending them to the areas obtained. In fact, many students anticipate the 

Trapezoidal Rule before it is presented as a method for approximating the area of a region 

in the plane. Aside from being an improvement to the left  and right Riemann sums, the 

Trapezoidal Rule has the added benefi t that it relieves students of the decision of whether to 

use the left  or right endpoints to calculate heights, since both of these must be calculated for 

the trapezoidal rule.

Consider the function y � 4 � .25 x  2  on the interval [0, 4] pictured below:

Note fi rst that the trapezoids are diffi  cult to see simply because the approximation is so good. 

Because each vertical segment except the left  and right ones appears in two trapezoids, the 

formula involves two of each of them. Notice also that the rightmost trapezoid is actually a 

Approximating Defi nite Integrals
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triangle. Th is has no eff ect on our calculation. For the diagram shown, the approximation to 

the area under the curve using trapezoids is:

 A 	    
f (0) � f (1)

 ________ 
2
   � �x �    

f (1) � f (2)
 ________ 

2
   � �x �    

f (2) � f (3)
 ________ 

2
   � �x �    

f (3) � f (4)
 ________ 

2
   � �x

     �   �x
 ___ 

2
   [  f (0) � 2f (1) � 2f (2) � 2f (3) � f (4)]

In general, then, the Trapezoidal Rule is simply another tool for estimating area. Oft en, we 

refer to Δx as h, and consider n trapezoids over the interval [a, b], where h �   b � a
 ____ n  ; thus, the 

formula appears as:

  A  
T
  	   h _ 

2
   [  f (a) � 2f (a � h) � 2f (a � 2h) � 2f (a � 3h) � … � 2f (b � h) � f (b)]

While many students mistakenly believe that the Midpoint Riemann Sum is the average 

of the left  and right sums, it should be easy to see that the Trapezoidal Rule actually is this 

average. Using the formulas for the left  and right Riemann sums shown above, we get 

  A  
T
  �   

 A  
L
  �  A  

R
 
 ______ 

2
  . Showing this graphically with just one subinterval should help to convince 

students of this relationship.

With trapezoidal sums, it is again important to know whether the approximation is too high 

or too low. A few graphical examples help us to discover the pattern. Consider the graphs 

below. (Only two trapezoids are shown to show the ideas more clearly.)



 33

Two of the fi gures show graphs of decreasing functions, and two show graphs of increasing 

functions. Two are concave down while the other two are concave up. 

Under what conditions is the approximation too high? Too low? Many people initially 

guess that whether the function increases or decreases aff ects the size of the approximation 

relative to the actual value, but this is not the case. It is only the concavity of the graph that 

determines whether the approximation is too high or too low. If the graph of the function is 

concave up, then the approximation is too high since the straight lines of the trapezoid are 

above the graph. Similarly, if the graph of the function is concave down, then the trapezoidal 

approximation is too low. Once again, this pattern should not be memorized by students. It 

is much easier to sketch a graph of the function and one trapezoid to observe the pattern and 

answer the question.

Approximations with Unequal Subintervals

When dealing with real-world data, the subdivisions, or subintervals, are oft en of unequal 

length. On recent AP Calculus Exams, problems such as these have been particularly diffi  cult 

for students. Th is may be because students view Riemann and trapezoidal sums as rules 

rather than concepts, which is what these sums actually represent. Consider the following 

example in which the values of a function are given at unequal subintervals.

x 0 2 3 7 9

f (x) 3 6 7 6 8

Note how the left - and right-hand approximations below are formed.

  LH � 3 � 2 � 6 � 1 � 7 � 4 � 6 � 2 � 52

  RH � 6 � 2 � 7 � 1 � 6 � 4 � 8 � 2 � 59

And the trapezoidal approximation.

 Trap �   1 _ 
2
   (3 � 6) � 2 �   1 _ 

2
   (6 � 7) � 1 �   1 _ 

2
   (7 � 6) � 4 �   1 _ 

2
   (6 � 8) � 2 �   111

 ___ 
2
   � 55.5

 Or, equivalently, Trap � (LH � RH)/2 � 55.5

Approximating Defi nite Integrals
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Instructional Unit: Left, Right, and Midpoint Riemann 
Sums

Jim Hartman

Th e College of Wooster

Wooster, Ohio

Context

Entry Behaviors

Students should be able to use their calculators to perform arithmetical computations, and 

be able to evaluate standard functions at particular points. Students should also be able to 

construct graphs of these standard functions.

Prior Knowledge

Students should understand the defi nition of the defi nite integral as a limit of Riemann 

sums. Th ey should also understand that the defi nite integral gives the area between the graph 

of a function and the x-axis when that function lies entirely above the x-axis on the interval 

of integration. Students should have encountered the Fundamental Th eorem of Calculus and 

be able to compute defi nite integrals using that theorem. In addition, students should know 

the Mean Value Th eorem and understand the idea of linear approximation to a function at a 

point.

Academic Motivation

Students should have encountered integrals for which the Fundamental Th eorem of Calculus 

does not provide a viable way of computing a defi nite integral. Th e motivation for this unit 

is to be able to approximate defi nite integrals because the Fundamental Th eorem does not 

provide a way to evaluate them exactly.

Education and Ability

Students should have taken the typical high school mathematics courses of Algebra I and 

Algebra II, and have a course that covers precalculus material such as trigonometry and 

conceptual ideas surrounding functions.

Performance Setting

Social Aspects

Th is should be used in an AP Calculus classroom where a teacher is guiding the exploration 

of ideas.
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Physical Aspects

Th e teacher should have the ability to display visual and written information. Each student 

should have his or her own graphing calculator.

Relevance

Th is unit is relevant to anyone needing to evaluate defi nite integrals whose integrands are 

given in symbolic form or are given by a data table.

Duration

Th is unit should take three to fi ve days to complete.

Accessibility and Adaptability

Th is unit is accessible to anyone with the prior knowledge and a computational device. 

While graphing calculators are the primary form of this device, anyone with computational 

soft ware could adapt this lesson to his or her setting. Students with a scientifi c calculator 

could do most of the work here but might not be able to explore the more geometric parts of 

the lesson.

Goals and Standards

Essential Question

Th e essential question addressed here is how to evaluate/approximate an integral when the 

Fundamental Th eorem of Calculus does not provide a viable way of doing so.

Goals

Th e goal is for students to be able to use left , right, and midpoint Riemann sums to 

approximate the value of a defi nite integral. Th ey should also be able to estimate the 

maximum possible error that they have made with their approximation.

Alignment with the AP Calculus Syllabus

Students are required by the AP Calculus syllabus to be able to use left , right, and midpoint 

Riemann sums to approximate a defi nite integral. However, they are not required to be able 

to do an error analysis.

Left, Right, and Midpoint Sum Approximations

Introduction

1. Motivation — The integral   � 
�1

   
1

   e  �  x  2   dx cannot be evaluated exactly. 

 Use this example to develop the following ideas.

Instructional Unit: Left, Right, and Midpoint Riemann Sums
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2. Recall the definition of the definite integral: 

    � 
a

   

b

  f  (x)dx �   lim            
 p 
  → 0     � 
k�1

   
n

   f ( c  
k
 )� x  

k
  

 where P : a �  x  
0
  	  x  

1
  	 … 	  x  

n
  � b is a partition of the interval [a, b],  c  

k
  is an arbitrary 

point in the  k  th  subinterval [ x  
k�1

 ,  x  
k
 ], � x  

k
  �  x  

k
  �  x  

k�1
  is the length of the  k  th  subinterval, 

and  
 P 
  � max(� x  
1
 , � x  

2
 , … , � x  n ) is the length of the longest subinterval. The 

summation on the right side of the equation is called a Riemann sum.

3. When   
 P 
  	 0 then   � 
a

   
b

  f  (x)dx 	   � 
k�1

  
n

    f ( c  
k
 )� x  

k
 . Thus, Riemann sums can be used to  

approximate a definite integral.

Left Riemann Sums

4. Left sums — Choose  c  
k
  to be the left endpoint of the  k  th  subinterval for each 

k  �  c  
k
  �  x  

k�1
  � . Thus we will have   � 

a

   
b

    f (x)dx 	   � 
k�1

  
n

    f ( x  
k�1

 )� x  
k
 . The summation is called the 

left Riemann sum approximation of the definite integral. 

5. Either give students a partition of the interval [�1, 1] or have them choose their own 

partition. Then have them construct a table of the following form to approximate 

  � 
�1

   
1

   e  �  x  2   dx using a left Riemann sum. See Appendix 1 for a table template.

k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

left  endpoint

 x  
k�1

 
f ( x  

k�1
 ) �  e  �  ( x  

k�1
 )  2  � x  

k
 f ( x  

k�1
 )� x  

k
 

1 [�1,  x  
1
 ] �1  e  �1  	 0.367879  x  

1
  � (�1) 0.367879( x  

1
  � 1)

2 [ x  
1
 ,  x  

2
 ]  x  

1
 f ( x  

1
 ) �  e  �  ( x  

1
 )  2   x  

2
  �  x  

1
  e  �  ( x  

1
 )  2   ( x  

2
  �  x  

1
 )

� � � � � �

n [ x  
n�1

 , 1]  x  
n�1

 f ( x  
n�1

 ) �  e  �  ( x  
n�1

 )  2  1 �  x  
n� 1

  e  �  ( x  
n�1

 )  2  (1 �  x  
n�1

 )

Sum   � 
k�1

   
n

    f ( x  
k�1

 )� x  
k
 

 Students should be able to compute these Riemann sums by hand for a small number 

of subintervals with a calculator to do the necessary arithmetic. To fi nd more useful 

approximations using smaller (and more) subintervals, students could program their 

calculators or use a spreadsheet program such as Excel to automate the necessary 

arithmetic. A particular example of such a table is:
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k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

left  endpoint

 x  
k�1

 
f ( x  

k�1
 ) �  e  � ( x  

k�1
 )  2  � x  

k
 f ( x  

k�1
 )� x  

k
 

1 [�1.00,�0.80] �1.00 0.367879 0.20 0.073575888

2 [�0.80, �0.75] �0.80 0.527292 0.05 0.026364621

3 [�0.75, �0.50] �0.75 �0569783 0.25 0.142445706

4 [�0.50, �0.30] �0.50 0.778801 0.20 0.155760157

5 [�0.30, 0.00] �0.30 0.913931 0.30 0.274179356

6 [0.00, 0.10] �0.00 1.000000 0.10 0.100000000

7 [0.10, 0.30] �0.10 0.990050 0.20 0.198009967

8 [0.30, 0.65] �0.30 0.913931 0.35 0.319875915

9 [0.65, 0.85] �0.65 0.655406 0.20 0.131081252

10 [0.85, 1.00] �0.85 0.485537 0.15 0.072830534

Sum 1.494123395

If we use the calculator to fi nd a decimal approximation to the integral, we get

   � 
�1

   
1

   e  � x  2   dx  	 1.493648266.

Right Riemann Sums

6. The technique is similar to left Riemann sums except that  c  
k
  is chosen to be the right 

endpoint ( c  
k
  �  x  

k
 ) of each subinterval, rather than the left endpoint. Again give students 

a partition of the interval [�1, 1], have them use the one they used for a left sum, or have 

them use a new partition of their own choosing. Have them construct a table like the one 

they did for the left Riemann sum.

k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

right endpoint

 x  
k
 

f ( x  
k
 ) �  e  � ( x  

k
 )  2  � x  

k
 f ( x  

k
 )� x  

k
 

1 [�1,  x  
1
 ]  x  

1
 f ( x  

1
 ) �  e  � ( x  

1
 )  2   x  

1
  � (�1)  e  � ( x  

1
 )  2   ( x  

1
  � (�1))

2 [ x  
1
 ,  x  

2
 ]  x  

2
 f ( x  

2
 ) �  e  � ( x  

2
 )  2   x  

2
  �  x  

1
  e  � ( x  

2
 )  2   ( x  

2
  �  x  

1
 )

� � � � � �

n [ x  
n�1

 , 1]  x  
n
  e  �1  	 0.367879 1 �  x  

n�1
 0.367879(1 �  x  

n�1
 )

Sum   � 
k�1

   
n

    f ( x  
k
 )� x  

k
 

Instructional Unit: Left, Right, and Midpoint Riemann Sums



38 

Special Focus: Approximation

Using the same partition used in part 5, we have the following table.

k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

right endpoint

 x  
k
 

f ( x  
k
 ) �  e  �  ( x  

k
 )  2  � x  

k
 f ( x  

k
 )� x  

k
 

1 [�1.00,�0.80] �0.80 0.527292 0.20 0.105458485

2 [�0.80, �0.75] �0.75 0.569783 0.05 0.028489141

3 [�0.75, �0.50] �0.50 0.778801 0.25 0.194700196

4 [�0.50, �0.30] �0.30 0.913931 0.20 0.182786237

5 [�0.30, 0.00] �0.00 1.000000 0.30 0.300000000

6 [0.00, 0.10] �0.10 0.990050 0.10 0.099004983

7 [0.10, 0.30] �0.30 0.913931 0.20 0.182786237

8 [0.30, 0.65] �0.65 0.655406 0.35 0.229392189

9 [0.65, 0.85] �0.85 0.485537 0.20 0.097107379

10 [0.85, 1.00] �1.00 0.367879 0.15 0.055181916

Sum 1.474906764

 You can also find Riemann sum applets at the following sites to illustrate ideas 

geometrically.

 a) http://www.slu.edu/classes/maymk/Riemann/Riemann.html

 b) http://science.kennesaw.edu/~plaval/applets/Riemann.html

 c) http://www.calvin.edu/~rpruim/courses/m161/F01/java/RiemannSums.shtml

 d) http://www.math.tamu.edu/AppliedCalc/Classes/Riemann/

 e) http://www.csun.edu/~hcmth018/RS.html

 Only this last applet allows one to use subintervals that don’t have equal width. However, 

the user has no control over the subintervals. They are chosen randomly by the applet.

Midpoint Riemann Sums

7. In order to compute a midpoint Riemann sum,  c  
k
  is chosen to be the midpoint 

  �  c  
k
  �   

 x  
k�1

  �  x  
k
 
 _______ 

2
   �  of each subinterval, rather than one of the endpoints. Again give students 

a partition of the interval [�1, 1], have them use the one they used for a left sum, or have 

them use a new partition of their own choosing. Have them construct a table like the one 

they did for the left and right Riemann sum.
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k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

midpoint

 c  
k
  �   

 x  
k�1

  �  x  
k
 
 _______ 

2
  

f ( c  
k
 ) �  e  � ( c  

k
 )  2  � x  

k
 f ( c  

k
 )� c  

k
 

1 [�1,  x  
1
 ]  c  

1
  �   

�1 �  x  
1
 
 ______ 

2
  f ( c  

1
 ) �  e  � ( c  

1
 )  2   x  

1
  � (�1)  e  � ( c  

1
 )  2   ( x  

1
  � (�1))

2 [ x  
1
 ,  x  

2
 ]  c  

2
  �   

 x  
1
  �  x  

2
 
 ______ 

2
  f ( c  

2
 ) �  e  � ( c  

2
 )  2   x  

2
  �  x  

1
  e  � ( c  

2
 )  2   ( x  

2
  �  x  

1
 )

� � � � � �

n [ x  
n�1

 , 1]  c  
n
  �   

 x  
n�1

  �  x  
n
 
 _______ 

2
  f ( c  

n
 ) �  e  � ( c  

n
 )  2  1 �  x  

n�1
  e  � ( c  

n
 )  2   (1 �  x  

n�1
 )

Sum   � 
k�1

   
n

   f ( c  
k
 )� x  

k
  

 Using a regular partition with each � x  
k
  � 0.2 (n � 10 subintervals), we have the 

following table for a midpoint Riemann sum.

k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

midpoint

 c  
k
  �   

 x  
k�1

  �  x  
k
 
 _______ 

2
  

f ( c  
k
 ) �  e  � ( c  

k
 )  2  � x  

k
 f ( c  

k
 )� x  

k
 

1 [�1.0,�0.8] �0.9 0.444858 0.2 0.088971613

2 [�0.8, �0.6] �0.7 0.612626 0.2 0.122525279

3 [�0.6, �0.4] �0.5 0.778801 0.2 0.155760157

4 [�0.4, �0.2] �0.3 0.913931 0.2 0.182786237

5 [�0.2, 0.0] �0.1 0.990050 0.2 0.198009967

6 [0.0, 0.2] �0.1 0.990050 0.2 0.198009967

7 [0.2, 0.4] �0.3 0.913931 0.2 0.182786237

8 [0.4, 0.6] �0.5 0.778801 0.2 0.155760157

9 [0.6, 0.8] �0.7 0.612626 0.2 0.122525279

10 [0.8, 1.0] �0.9 0.444858 0.2 0.088971613

Sum 1.496106505

Exploration of Properties

8. The applets can be used to explore the following properties of these sums.

  a)  A left Riemann sum for a function increasing on the interval will be an 
underapproximation.

  b)  A left Riemann sum for a function decreasing on the interval will be an 
overapproximation.

Instructional Unit: Left, Right, and Midpoint Riemann Sums
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  c)  A right Riemann sum for a function increasing on the interval will be an 
overapproximation.

  d)  A right Riemann sum for a function decreasing on the interval will be an 
underapproximation.

9. Try to challenge students to discover these properties by using functions that are either 

strictly increasing or decreasing on the intervals. Ask them to construct tables as before, 

along with a picture similar to those found in the applets.

Error Estimates

While error estimates are not a part of the AP syllabus, numerical approximations of 

integrals don’t have much worth unless we know what kind of errors are being made in the 

approximation.

10. Error formulas for the three methods above are given by the formulas below. These 

formulas are valid when using subintervals of equal width. Proofs for these formulas can 

be found in Appendix 2. In all of the formulas below  M  
1
  �   max           a�x�b     �  � f �(x) �  � ,

  M  
2
  �   max           a�x�b     �  � f � �(x) �  � , and E represents the error in the approximation by that sum. The 

value of  M  
1
  can most easily be found by plotting the function defined by y �  � f �(x) �  on 

the interval of interest.

Riemann Sum Error

Left  � E �  �   
 M  

1
  (b � a)  2 

 ________ 
2n

  

Right  � E �  �   
 M  

1
  (b � a)  2 

 ________ 
2n

  

Midpoint  � E �  �   
 M  

2
  (b � a)  3 

 ________ 
24 n  2 

  

11. For the example above,   � 
�1

   
1

   e  � x  2   dx, suppose we had used 10 subintervals of equal width 

 �x �   
1 � (�1)

 _______ 
10

   �   1 _ 
5
   � .2 in all of our sums. For f (x) �  e  � x  2   we have f �(x) � �2x e  � x  2  . 

Graphing y �  � f �(x) �  on the interval [�1, 1] we get

 

 From this graph we can simply observe that  M  
1
  � 0.90. One could use more 

sophistication and get a better approximation to  M  
1
 , but it’s probably better to get a 
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quick upper bound for  M  
1
  rather than a more careful approximation. Thus a left or 

right Riemann sum approximation has an error E with  � E �  �   
0.90 ·  (2)  2 

 _______ 
2.10

   � 0.180. For 

the midpoint approximation we got in part 7) we first find f �(x) � �2 e  � x  2   � 4 x  2  e  � x  2  . 

Graphing y �  � f �(x) �  we get

 and can see that  M  
2
  � 2. Using this we get a midpoint approximation error  E  

mid
  with 

 �  E  
mid

  �  �   
2 ·  (2)  3 

 ______ 
24 · 1 0  2 

   � 0.006666667. Since our midpoint approximation was 1.496106505 

from Part 7) we now know that  

 1.496106505 � 0.006666667 	   � 
�1

   
1

   e   �x  2   dx 	 1.496106505 � 0.006666667 or

 equivalently, 1.489439838 	   � 
�1

   
1

   e   �x  2   dx 	 1.502773172.

 Students should be given the chance to do this kind of error analysis so that they have 

both an upper bound and lower bound on the integral they’re trying to evaluate. One 

should note that the idea of an upper and lower bound have already been introduced 

already in terms of over- and underapproximations for functions that are strictly 

increasing or decreasing on the interval of integration. For example, any right 

Riemann sum for   � 
a

   
b

    f (x)dx gives an upper bound for this integral when f  is increasing on 

the interval [a, b].

12.  We can also use these errors to realize a desired accuracy for an integral. Suppose, for 

example, we had wished to achieve an error for the midpoint approximation so that  

�  E  
mid

   �  	 0.001. We can achieve this by making   
 M  

2
   (b � a)  3 

 _________ 
 24n  2 

   � 0.001. This is equivalent to 

 �



   
 M  

2
  (b � a)  3 

 ________ 
24 � (0.001)

     � n. For this example this would mean that

 n �  �



   
 M  

2
  (b � a)  3 

 ________ 
24 � (0.001)

     �  �



   
2 (2)  3 
 ________ 

24 � (0.001)
     	 25.82. Thus we would need a regular partition using 

at least 26 subintervals to achieve the desired error. To guarantee this maximum error of 

0.001 using a left or right sum for this integral, we would need   
 M  

1
  (b � a)  2 

 ________ 
2n

   � 0.001 or 

n �   
.96 �  (2)  2 

 ________ 
2 � (0.001)

   � 1,920.

13. Appendix 3 contains worksheets for students to complete using these ideas. Solutions to 

the problems in these worksheets are found in Appendix 4.
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Appendix 1: Riemann Sum Table Templates

k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

left  endpoint

 x  
k�1

 
f ( x  

k�1
 ) � x  

k
 f ( x  

k�1
 )� x  

k
 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Sum



 43

k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

right endpoint

 x  
k
 

f ( x  
k
 ) � x  

k
 f ( x  

k
 )� x  

k
 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Sum
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k
 k  th  subinterval

[ x  
k�1

 ,  x  
k
 ]

midpoint

  
 x  

k�1
  �  x  

k
  
 _______ 

2
  

f   �     x  
k�1

  �  x  
k
  
 _______ 

2
   � � x  

k
 f   �     x  

k�1
  �  x  
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Appendix 2: Error Bounds for Riemann Sum 
Approximations

Proposition:

Let   � 
k�1

  
n

    f ( x  
k�1

 )�x where �x �   b � a
 ____ n   be the left  Riemann sum approximation of   � 

a

   
b

    f (x)dx. 

If E �   � 
a

   
b

    f (x)dx �   � 
k�1

  
n

    f ( x  
k�1

 )�x then  � E �  �    
 M  

1
  (b � a)  2 

 ________ 
2n

    if f  is continuously diff erentiable 

on [a, b].

Proof:

Consider the  k  th  subinterval [ x  
k�1

 ,  x  
k
 ]. Using the Mean Value Th eorem, we have that for each x in 

this interval there is a point  c  
x 
 with  x  

k�1
  �  c  

x
  � x so that f (x) � f ( x  

k�1
 ) � f �( c  

x
 )(x �  x  

k�1
 ). 

Th erefore

      � 
 x  

k�1
 

  

 x  
k
 

  f  (x)dx �   � 
 x  

k�1
 

  

 x  
k
 

    �  f ( x  
k�1

 ) � f �( c  
x
 ) (x �  x  

k�1
 ) �  dx

        �   � 
 x  

k�1
 

  

 x  
k
 

  f  ( x  
k�1

 )dx �   � 
 x  

k�1
 

  

 x  
k
 

  f  �( c  
x
 )(x �  x  

k�1
 )dx

        � f ( x  
k�1

 )( x  
k
  �  x  

k�1
 ) �   � 

 x  
k�1

 

  

 x  
k
 

  f  �( c  
x
 )(x �  x  

k�1
 )dx

        � f ( x  
k�1

 )�x �   � 
 x  

k�1
 

  

 x  
k
 

  f  �( c  
x
 )(x �  x  

k�1
 )dx

Th us    � 
 x  

k�1
 

  

 x  
k
 

  f  (x)dx � f ( x  
k�1

 )�x �  � 
 x  

k�1
 

  

 x  
k
 

  f  �( c  
x
 )(x �  x  

k�1
 )dx and

     � 
a

   

b

  f  (x)dx �  � 
k�1

   
n

   f  ( x  
k�1

 )�x �  � 
k�1

   
n

    � 
 x  

k�1
 

  

 x  
k
 

  f   (x)dx � f ( x  
k�1

 )�x

         �   � 
k�1

   
n

    � 
 x  

k�1
 

  

 x  
k
 

  f   �( c  
x
 )(x �  x  

k�1
 )dx

From this

    � E �  �  �   � 
a

   

b

   f  (x)dx �  � 
k�1

   
n

   f  ( x  
k�1

 )�x � 
          �  �   � 

k�1
   

n

    � 
 x  

k�1
 

  

 x  
k
 

  f   �( c  
x
 )(x �  x  

k�1
 )dx � 
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          �   � 
k�1

   
n

   �   � 
 x  

k�1
 

  

 x  
k
 

  f  �( c  
x
 )(x �  x  

k�1
 )dx �  

          �   � 
k�1

   
n

    � 
 x  

k�1
 

  

 x  
k
 

   � f �( c  
x
 )(x �  x  

k�1
 ) �   dx

          �   � 
k�1

   
n

    � 
 x  

k�1
 

  

 x  
k
 

   M  
1
   (x �  x  

k�1
 )dx

or now

    � E �  �   � 
k�1

   
n

   M  
1
    �   1 __ 

2
  (x �  x  

k�1
  )  2  �  |    x  

k�1
 
  

 x  
k
 

  

          �   � 
k�1

   
n

   M  
1
    �   1 __ 

2
  ( x  

k
  �   x  

k�1
 )  2  � 

          � n M  
1
   
(�x )  2 

 ____ 
2
  

          � n M  
1
   
   �   b � a

 _____ n   �   2 
 ______ 

2
  

          �o  
 M  

1
  (b � a)  2 

 ________ 
2n

  

Proposition:

Let   � 
k�1

  
n

    f ( x  
k
 )�x where �x �   b � a

 ____ n   be the right Riemann sum approximation of   � 
a

   
b

  f  (x)dx. 

If E �   � 
a

   
b

   f  (x)dx �   � 
k�1

  
n

    f ( x  
k
 )�x then  � E �  �    

 M  
1
  (b � a)  2 

 ________ 
2n

    where  M  
1
  �   max           a�x�b     �  � f �(x) �  �  if  f  is 

continuously diff erentiable on [a, b], i.e. if the derivative of f  is continuous on [a, b].

Proof:

Th e proof here is essentially identical to the proof above. Th e only diff erence is this one uses the 

Mean Value Th eorem to get a point  c  
x 
 with x �  c  

x
  �  x  

k
  so that f (x) � f ( x  

k
 ) � f �( c  

x
 )(x �  x  

k
 ). 

Proposition:

Let   � 
k�1

  
n

    f   �    x  
k�1

  �  x  
k
  
 _______ 

2
    � �x where �x �   b � a

 ____ n    be the midpoint Riemann sum approximation 

of   � 
a

   
b

  f  (x)dx. 

If E �   � 
a

   
b

    f (x)dx �   � 
k�1

  
n

    f   �    x  
k�1

  �  x  
k
 
 _______ 

2
    �  �x then  � E �  �    

 M  
2
  (b � a)  3 

 ________ 
24 n  2 

    where  M  
2
  �   max           a�x�b     �  � f �(x) �  �  if  f  

has a second derivative that is continuous on [a, b].
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Proof:

Consider the  K  th  subinterval [ x  
k�1

 ,  x  
k
 ] again. One can show using the Mean Value Th eorem 

that we have for each x in this interval a point  c  
x
  between x and  m  

k
  �   

 x  
k�1

  �  x  
k
 
 _______ 

2
   so that 

f (x) � f ( m  
k
 ) � f �( m  

k
 )(x �  m  

k
 ) �   f  �( c  

x
 ) ____ 

2
  (x �  m  

k
  )  2 .

Th erefore, similar to the fi rst proposition,

   � 
 x  

k�1
 

  

 x  
k
 

  f  (x)dx �  � 
 x  

k�1
 

  

 x  
k
 

    � f ( m  
k
 ) � f �( m  

k
 )(x �  m  

k
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 _____ 

2
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k
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  �   � 
 x  
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x
 )
 _____ 

2
   (x �  m  

k
  )  2 dx

     � f ( m  
k
 )�x � 0 �   � 

 x  
k�1

 

  

 x  
k
 

      
f �( c  

x
 )
 ____ 

2
   (x �  m  

k
  )  2 dx

Th e second integral in the second line above is 0 because ( x  
k
  �   m  

k
 )  2  � ( x  

k�1
  �   m  

k
 )  2  as  m  

k
  is 

the midpoint of each subinterval. Using this, we now get
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Appendix 3: Riemann Sum Worksheets

1. Find left and right Riemann sum approximations to   � 
0

   
�

  s in( x  2 )dx with n � 5 equal 

subintervals.

2. Find a left Riemann sum approximation to   � 
1

   
2

    
1
 _ x    dx with n � 10 equal subintervals. Is this 

an over approximation or an under approximation?

3. Find a right Riemann sum approximation to   � 
1

   
2

    
1
 _ x    dx with n � 10 equal subintervals. 

Is this an over approximation or an under approximation?

4. Using the approximations found in 2 and 3, find upper and lower bounds for   � 
1

   
2

    
1
 _ x    dx.

5. The following table gives data from a two-hour trip. Use the table to get both left and 

right Riemann sum approximations for the total distance traveled.

 

Time (minutes) 0 10 20 30 40 50 60 70 80 90 100 110 120

Speed (mph) 0 5 15 30 50 55 60 57 46 35 30 27 0

6. Approximate π using both left and right Riemann sum approximations to   � 
�1

   
1

    2 �



 1� x  2    dx. 

Use any number of subintervals you desire.

7. Use the partition P : 0 	 1.1 	 2.2 	 3.0 	 4.5 	 5.8 	 7.5 	 10 of the interval [0, 10] 

to find left and right Riemann sum approximations for   � 
0

   
10

   �



  x  3  � 1   dx.

Midpoint Riemann Sums

1. Find the midpoint Riemann sum approximation to   � 
0

   
�

  s in( x  2 )dx with n � 7 equal 

subintervals.

2. Find a midpoint Riemann sum approximation to   � 
1

   
2

    
1
 _ x    dx with n � 10 equal subintervals. 

Find the midpoint Riemann sum approximation to the integral with n � 20 equal 

subintervals.

3. The following table gives data from a two-hour trip. Use the table to get a midpoint 

Riemann sum approximation for the total distance traveled. [Hint:  Use 20-minute 

subintervals.]

 

Time (minutes) 0 10 20 30 40 50 60 70 80 90 100 110 120

Speed (mph) 0 5 15 30 50 55 60 57 46 35 30 27 0

4. Approximate π using a midpoint Riemann sum approximation to   � 
�1

   
1

    2 �



 1� x  2    dx. Use any 

number of subintervals you desire.
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5. Using the partition P : 0 	 1.1 	 2.2 	 3.0 	 4.5 	 5.8 	 7.5 	 10 of the interval [0, 10] 

to find a midpoint Riemann sum approximation for   � 
0

   
10

     �



  x  3  � 1  dx.

Error in Estimating Integrals

1. Find the maximum error made in approximating   � 
10

   
�

  s in( x  2 )dx with either a left or right 

Riemann sum when n � 10 equal subintervals. How many subintervals would need to be 

used to guarantee an error E with  � E �  	 0.00005?

2. Find the maximum error made in approximating   � 
10

   
�

  s in( x  2 )dx with a midpoint Riemann 

sum when n � 10 equal subintervals. How many subintervals would need to be used to 

guarantee an error E with  � E �  	 0.00005?

3. What is the maximum error that could be made in approximating In(2) �   � 
1

   
2

      
1
 _ x   dx with a 

left or right Riemann sum using n � 15 subintervals? How many subintervals would be 

needed in order to guarantee an error E with  � E �  	 0.00005?

4. What is the maximum error that could be made in approximating In(2) �   � 
1

   
2

      
1
 _ x   dx with 

a midpoint Riemann sum using n � 15 subintervals? How many subintervals would be 

needed in order to guarantee an error E with  � E �  	 0.00005?

5. What is the maximum error that could be made in approximating   � 
0

   
10

   �



  x  3  � 1   dx with a 

left or right Riemann sum using n � 20 subintervals? How many subintervals would be 

needed in order to guarantee an error E with  � E �  	 0.00005?

6. What is the maximum error that could be made in approximating   � 
0

   
10

   �



  x  3  � 1   dx with a 

midpoint Riemann sum using n � 20 subintervals? How many subintervals would be 

needed in order to guarantee an error E with  � E �  	 0.00005?

7. What is the maximum error that could be made in approximating � �   � 
�1

   
1

    2 �



 1 �  x  2   dx 

with a right or left Riemann sum with n � 10 subintervals? What is the problem you 

encounter in finding this maximum error? Do you have any suggestions to remedy this 

problem?
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Appendix 4: Solutions to Riemann Sum Worksheets

Left and Right Riemann Sum Worksheet Solutions

1. The partition of the interval will be P : 0 <   � __ 
5
   <   2� ___ 

5
   <   3� ___ 

5
   <   4� ___ 

5
   < �. The left sum 

approximation of the integral will be 

 sin(0) �   � __ 
5

   � sin  �    �   � __ 
5

   �   2  �  �   � __ 
5

   � sin  �    �   2� ___ 
5

   �   2  �  �   � __ 
5

   � sin  �    �   3� ___ 
5

   �   2  �  �   � __ 
5
   � sin  �    �   4� ___ 

5
   �   2  �  �   � __ 

5
   .

 Evaluating each term using a calculator, we get 0 � 0.2416569462 � 0.6282966774 � 

(�0.2512975162) � 0.02095776796 Ķ 0.63961387536. A right sum approximation of the 

integral would be 

 sin  �    �   � __ 
5

   �   2  �  �   � __ 
5

   � sin  �    �   2� ___ 
5

   �   2  �  �   � __ 
5

   sin  �    �   3� ___ 
5

   �   2  �  �   � __ 
5

   � sin  �    �   4� ___ 
5

   �   2  �  �   � __ 
5

   � sin( �   2 ) �   � __ 
5

  ,

 which gives 0.2416569462 � 0.6282966774 � (�0.2512975162) � 0.02095776796 � 

(�0.2703662302), which gives 0.36924764516.

2. The partition of the interval is P: 1 	 1.1 	 1.2 	 1.2 	 1.4 	 1.5 	 1.6 	 1.7 	 1.8 	 

1.9 	 2. The left sum approximation of the integral is

      1 __ 
1
   �   1 ___ 

10
   �   1 ___ 

1.1
   �   1 ___ 

10
   �   1 ___ 

1.2
   �   1 ___ 

10
   �   1 ___ 

1.3
   �   1 ___ 

10
   �   1 ___ 

1.4
   �   1 ___ 

10
   �   1 ___ 

1.5
   �   1 ___ 

10
   �   1 ___ 

1.6
   �   1 ___ 

10
   �   1 ___ 

1.7
   �   1 ___ 

10
   

�   1 ___ 
1.8

   �   1 ___ 
10

   �   1 ___ 
1.9

   �   1 ___ 
10

  .

 Evaluating term by term, we get

 0.1 � 0.09090909091 � 0.08333333333 � 0.07692307692 � 0.07142857143 

� 0.06666666667 � 0.06250000000 � 0.05882352941 � 0.05555555556 

� 0.05263157895 	 0.7187714032.

 This is an overapproximation because f (x) �   1 __ x   is decreasing on the interval. Note that 

geometrically this means the rectangles determined by using the left endpoints of the 

subintervals will be circumscribed.

3. The right sum approximation of the integral is

   1 ___ 
1.1

   �   1 ___ 
10

   �   1 ___ 
1.2

   �   1 ___ 
10

   �   1 ___ 
1.3

   �   1 ___ 
10

   �   1 ___ 
1.4

   �   1 ___ 
10

   �   1 ___ 
1.5

   �   1 ___ 
10

   �   1 ___ 
1.6

   �   1 ___ 
10

   �   1 ___ 
1.7

   �   1 ___ 
10

   �   1 ___ 
1.8

   �   1 ___ 
10

   

�   1 ___ 
1.9

   �   1 ___ 
10

   �   1 __ 
2

   �   1 ___ 
10

  

 Evaluating this term by term, we get

 0.09090909091 � 0.08333333333 � 0.07692307692 � 0.07142857143 � 0.06666666667 

� 0.06250000000 � 0.05882352941 � 0.05555555556 � 0.05263157895 

� 0.05 	 0.6687714032.
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 This will be an underapproximation because f (x) �   1 __ x   is decreasing and nonnegative on 

the interval. Note that geometrically this means the rectangles determined by using the 

right endpoints of the subintervals will be inscribed.

4. The estimates obtained by problems 3 and 4 imply

 0.6687714032 	   � 
1

   
2

      
1 __ x   dx 	 0.7187714032.

5. We first note that all subintervals have a width of 10 min. � 1/6 hr. We will use 1/6 hr 

since the speeds are in mph. A left sum will be

 0 �   1 __ 
6

   � 5 �   1 __ 
6

   � 15 �   1 __ 
6

   � 30 �   1 __ 
6

   � 50 �   1 __ 
6

   � 55 �   1 __ 
6

   � 60 �   1 __ 
6

   � 57 �   1 __ 
6

   � 46 �   1 __ 
6

   � 35 �   1 __ 
6

   

� 30 �   1 __ 
6

   � 27 �   1 __ 
6

   �   410 ___ 
6

  .

 The total distance traveled was about 68.3 miles. A right sum approximation will be

 5 �   1 __ 
6

   � 15 �   1 __ 
6

   � 30 �   1 __ 
6

   � 50 �   1 __ 
6

   � 55 �   1 __ 
6

   � 60 �   1 __ 
6

   � 57 �   1 __ 
6

   � 46 �   1 __ 
6

   � 35 �   1 __ 
6

   � 30 �   1 __ 
6

   � 

27 �   1 __ 
6

   � 0 �   1 __ 
6

   �   410 ___ 
6

  ,

 which gives the same estimate as the left sum estimate.

6. Since students get to make their own choice of partition, all answers cannot be 

anticipated. However, here are the results for some common choices they might make 

with subintervals of equal width. One should note that all left and right Riemann sums 

for the same number of subintervals will be the same because the integrand is 0 at both 

endpoints of the interval [�1, 1].

Number of subintervals Left Riemann Sum � Right Riemann Sum

4 2.732050808

5 2.847673436

10 3.037048829

15 3.084570902
20 3.104518328
25 3.115048238
30 3.121391413
50 3.132196311
75 3.136475846

100 3.138268510
200 3.140417036
500 3.141295187
1000 3.141487472
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7. A left Riemann sum here for g(x) �  �



  x  3  � 1   is given by

 g(0) � 1.1 � g(1.1) � 1.1 � g(2.2) � 0.8 � g(3.0) � 1.5 � g(4.5) � 1.3 � g(5.8) � 1.7 

� g(7.5) � 2.5 	 101.1412655.

 A right Riemann sum is given by

 g(1.1) � 1.1 � g(2.2) � 1.1 � g(3.0) � 0.8 � g(4.5) � 1.5 � g(5.8) � 1.3 � g(7.5) � 1.7 

� g(10) � 2.5 	 156.3244446 

Midpoint Riemann Sums Worksheet Solutions

1. The partition of the interval will be P: 0 	   � __ 
7

   	   2� ___ 
7

   	   3� ___ 
7

   	   4� ___ 
7

   	   5� ___ 
7

   	    6� ___ 
7

   	 � . 

The midpoint sum approximation of the integral will be

 sin  �    �   � ___ 
14

   �   2  �  �   � __ 
7

   � sin  �    �   3� ___ 
14

   �   2  �  �   � __ 
7

   � sin  �    �   5� ___ 
14

   �   2  �  �   � __ 
7

   � sin  �    �   7� ___ 
14

   �   2  �  �   � __ 
7

   

� sin  �    �   9� ___ 
14

   �   2  �  �   � __ 
7

   � sin  �    �   11� ____ 
14

   �   2  �  �   � __ 
7

   � sin  �    �   13� ____ 
14

   �   2  �  �   � __ 
7

  

 Evaluating each term using a calculator, we get

 0.02258977764 � 0.1965026913 � 0.4271428981 � 0.2801699042 
� (�0.3616813335) � (�0.08485453354) � 0.3556360905 	 0.8355054947.

2. The partition of the interval is P: 1 	 1.1 	 1.2 	 1.2 	 1.4 	 1.5 	 1.6 	 1.7 	 1.8 	 

1.9 	 2. The midpoint sum approximation of the integral is

   1 ____ 
1.05

   �   1 ___ 
10

   �   1 ____ 
1.15

   �   1 ___ 
10

   �   1 ____ 
1.25

   �   1 ___ 
10

   �   1 ____ 
1.35

   �   1 ___ 
10

   �   1 ____ 
1.45

   �   1 ___ 
10

   �   1 ____ 
1.55

   �   1 ___ 
10

   �   1 ____ 
1.65

   �   1 ___ 
10

   

�   1 ____ 
1.75

   �   1 ___ 
10

   �   1 ____ 
1.85

   �   1 ___ 
10

   �   1 ____ 
1.95

   �   1 ___ 
10

  

 Evaluating term, by term we get

 0.09523809524 � 0.08695652174 � 0.08 � 0.07407407407 � 0.06896551724 

� 0.06451612903 � 0.06060606061 � 0.05714285714 � 0.05405405405 

� 0.05128205128 	 0.6928353603.

3. We first note that all subintervals have a width of 10 min. � 1/6 hr. However, to get a 

midpoint Riemann sum based upon the data there, we must use subintervals of width 

20 min. � 1/3 hr. The midpoint Riemann sum will be

 5 �   1 __ 
3

   � 30 �   1 __ 
3

   � 55 �   1 __ 
6

   � 57 �   1 __ 
3

   � 35 �   1 __ 
3

   � 27 �   1 __ 
3

    �   209 ___ 
3

   	 69.7mi.

4. Because students get to make their own choice of partition, all answers cannot be 

anticipated. However, here are the results for some common choices they might make 

with subintervals of equal width. One should note that all left and right Riemann sums 

for the same number of subintervals will be the same because the integrand is 0 at both 

endpoints of the interval [�1, 1].

Instructional Unit: Left, Right, and Midpoint Riemann Sums
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Number of subintervals Left Riemann Sum � Right Riemann Sum

4 3.259367329

5 3.226424222

10 3.171987824

15 3.158211924

20 3.152411434

25 3.149344383

30 3.147494899

50 3.144340715

75 3.143089854

100 3.142565554

200 3.141936857

500 3.141679766

1000 3.141623447

7. A midpoint Riemann sum here for g(x) �  �



  x  3  � 1   is given by 

 g(0.55) � 1.1 � g(1.65) � 1.1 � g(2.6) � 0.8 � g(3.75) � 1.5 � g(5.15) � 1.3 

� g(6.65) � 1.7 � g(8.75) � 2.5 	 180.6880110

Error in Estimating Integrals Worksheet Solutions

1. The formula for the maximum error E is given by  � E �  �    
 M  

1
 (b  � a)  2 

 ________ 
2n

  . For f (x) � sin( x  2 )

 we know that f �(x) � 2xcos( x  2 ). Graphing y =  � f �(x) �  we find that  M  
1
  � 6.2. Thus we 

have  � E �  �   
6.2(� �  0)  2 

 _________ 
2 � 10

   	 3.0595774.

2. The formula for the maximum error E is given by  � E �  �   
 M  

2
 (b  � a)  3 

 ________ 
24 n  2 

  . For f (x) � sin( x  2 ) we 

know that f �(x) � 2xcos( x  2 ) and  f �(x) � 2cos( x  2 ) � 4 x  2  sin( x  2 ). Graphing y �  � f �(x) �  we 

find that  M  
2
  � 32. Thus we have  � E �  �   

32(� �  0)  3 
 ________ 

24 � 100
   	 0.4134170224.

3. We know that    �   1 _ x   �   �  � �   1 __ 
 x  2 

  . On the interval [1, 2] the absolute value of �   1 ___ 
 x  2  

   is 

maximized when x � 1. Thus  M  
1
 � 1, and using the formula  � E �  �   

 M  
1
 (b �  a)  2 

 ________ 
2n

   we find 

 � E �  �   
1 �  (2 � 1)  2 

 ________ 
2 � 15

   	 0.03333333333. To guarantee  � E �  	 0.00005 we must have

   
 M  

1
 (b �  a)  2 

 __________ 
2n

   	 0.00005 or n �   1 � (2  � 1)  2  ________ 
2(0.00005)

   �    1
 _____ 

0.0001
   � 10,000. Thus we must use more 

than 10,000 equal subintervals.
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4. We know that    �   1 _ x   �   �  � �   1 __ 
 x  2 

   and equal    � �   1 __ 
 x  2 

   �   �  �   2 __ 
 x  3 

  . On the interval [1, 2] the absolute 

value of   2 __ 
 x  3 

   is maximized when x � 1. Thus  M  
2
  � 2, and using the formula 

 � E �  �   
 M  

2
 (b � a )  3 

 ________ 
24 n  2 

   we find  � E �  �   
2 � (2 �  1)  3 

 ________ 
 24 � 15  2 

    	 0.0003704. To guarantee  � E �  	 0.00005 we 

must have   
 M  

2
 (b � a )  3 

 __________ 
24 n  2 

   	 0.00005 or  n  2  �   
2 � (2  � 1)  3 

 _________ 
24(0.00005)

   �   5000 ____ 
3

  . This means we must have 

n �  �



   5000 ____ 
3

     	 40.825. Thus we must use 41 or more subintervals.

5. Maximum error E satisfies  � E �  �   
 M  

1
 (b �  a)  2 

 __________ 
2n

  . For f (x) �  �



  x  3  � 1  , we know that

 f �(x) �    3x  2  _________ 
2 �



  x  3  � 1  
  . Graphing y �  � f �(x) �  we see that its maximum value on [0, 10] 

occurs when x � 10. Computing f �(10) we find that  M  
1
  � 4.74105. Thus we have 

 � E �  �    
4.74105(10  � 0)  2 

  ____________ 
2 � 20

   	 11.85262500. To guarantee  � E �  	 0.00005 we must 

have   
 M  

1
 (b �  a)  2 

 __________ 
2n

   	 0.00005 or n �    
4.74105 � (10�0 )  2 

  _____________ 
2(0.00005)

   �   474.105
 ______ 

0.0001
   � 4,74,050. Thus we must 

use more than 4,741,050 equal subintervals.

6. For f (x) �  �



  x  3  � 1   we know that f �(x) �   3 x  2   _________ 
2 �



  x  3  � 1  
   and f �(x) �   

3x( x  3  � 4)
 ___________ 

4(  �



  x  3  � 1  )  
3

 
  . 

Graphing y �  � f �(x) �  on the interval [0, 10] gives  M  
2
  � 1.5, and using the formula 

 � E �  �   
 M  

2
 (b �  a)  3 

 __________ 
24 n  2 

   we find  � E �  �   
1.5 � (10 �  0)  3 

 __________ 
24 �  20  2  

   � 0.15625. To guarantee  � E �  	 0.00005 

we must have    
 M  

2
 (b � a )  3 

 ________ 
24 n  2 

   	 0.00005 or   n  2  �   
1.5 � (10 � 0 )  3 

 __________ 
24(0.00005)

   � 1,250,000. This means we 

must have n �  �



 1,250,000   	 1118.034. Thus we must use 1,119 or more subintervals.

7. For f (x) � 2 �



 1 �  x  2    we have f �(x) �   �2x ________ 
 �



 1 �  x  2   
  . This function is unbounded on the 

interval [�1, 1]. Thus we cannot get an upper bound on the error using the given 

formulas. One could eliminate the problem at one endpoint by using   � 
0

   
1

  4 �



 1 �  x  2     dx 

to estimate �. Using 5 subintervals for this integral would be equivalent to the 10 

subintervals stipulated. However, there is still a problem at the right endpoint of the 

interval [0, 1]. One could use geometric ideas to find the maximum error. Consider the 

graphs below.

Instructional Unit: Left, Right, and Midpoint Riemann Sums
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We observe that the left  sum gives an overestimate and the right sum gives an underestimate. 

Th e left  Riemann sum with n � 5 equal subintervals, is 3.437048829, and the right Riemann 

sum, is 2.637048829. Th us the maximum error made is the diff erence of these numbers, 

which is 0.8.
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Approximating Solutions to Differential Equations:
Slope Fields and Euler’s Method

Brendan Murphy

John Bapst Memorial High School

Bangor, Maine

 Th e concept of slope fi elds fi rst appeared in the AP Calculus BC 1998 Exam, and 

later was added to the AP Calculus AB 2004 Exam. In their simplest form, slope fi elds are 

nothing more than a graphical approximation of a family of vertically stacked functions; in 

other words, they are a fi eld of slope segments, or a fi eld of tangent line segments. Slope fi elds 

are not restricted to graphs that are mathematical functions, but it is best to introduce this 

topic by using relatively easy functions. Slope fi elds can also be thought of as the graphical 

approximation for the solution to a particular diff erential equation (DE).

 When working with antiderivatives, I want my students to discover that there are 

an infi nite number of solutions to a simple diff erential equation such as   
dy

 ___ 
dx

   � 2x. Students 

quickly see that F (x) �  x  2  is one of the many functions that could actually be a solution to 

this diff erential equation. In fact, F (x) can be  x  2  � C and the derivative is still   
dy

 ___ 
dx

   � 2x. Th e 

constant of integration (�C) included in the solution becomes part of the student’s intuitive 

thinking (although many unfortunately will forget this �C on future problems/exams).  Th e 

fi gure below shows the graphs of the following functions: F (x) �  x  2  � 2, F (x) �  x  2  � 1, 

F (x) �  x  2 , F (x) �  x  2  � 1, and F (x) �  x  2  � 2.

 On the fi rst day of teaching antiderivatives I introduce slope fi elds (sometimes called 

direction fi elds) to my students. From my previous diff erential equation example,   
dy

 ___ 
dx

   � 2x, 

we graph a family of vertically stacked functions on the whiteboard to represent the potential 

solutions for this DE. From this graph I develop a slope fi eld by making tangent-line 

segments that approximate the graphical solution to the DE. It is easy for my students to 

discover the parabolic solution F (x) �  x  2  � C to the DE embedded in the slope-fi eld graph. 

Approximating Solutions to Differential Equations



58 

Special Focus: Approximation

To produce a slope fi eld for the diff erential equation   
dy

 ___ 
dx

   � 2x, students need to calculate the 

slope at various coordinate points. At every point where x � 0 (regardless of the y-value) the 

slope is equal to zero (0), and students should draw a short horizontal line segment at these 

points. At every point where x � 1 (once again, regardless of the y-value) the slope is equal 

to two (2), and students should draw a short line segment with an approximate slope of two 

(2). Aft er students have drawn these tangent-line segments, they erase the original family of 

parabolic curves. Students quickly discover how easy it is to construct a slope fi eld, give a 

specifi c diff erential equation.

Consider the following problem from the AP Course Description.

AP Calculus Course Description May 2006, May 2007

BC Multiple-Choice Problem #7, Noncalculator

In this multiple-choice question, students are given a slope fi eld in Quadrant I and asked 

which function could be a particular solution. If students are familiar with the graphs 

of these basic functions, then answer E is the obvious choice because one can see the 

logarithmic curve embedded in the slope fi eld.

Th e slope fi eld for a certain diff erential equation is shown above. Which of the following 

could be a specifi c solution to that diff erential equation?
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 (A)    y �  x  2 

  (B)    y �  e  x 

 (C)    y �  e  �x 

 (D)    y � cos x

  (E)    y � ln x

 When constructing slope fi elds we select certain points on the graph and use the DE 

to fi nd the slope of the function at that point. We then draw a short line segment with that 

slope on our slope fi eld graph. By calculating the diff erent slopes using a number of diff erent 

coordinate points, students can approximate the graph of the (solution) function using a 

small number of points and line segments that are in the domain of the function. Students 

can draw a particular solution on the slope-fi eld graph that they can see embedded in the 

slope fi eld. Th is should help the students visualize what a potential solution to the diff erential 

equation could look like. 

 Students should also be able to match slope fi elds with their diff erential equations 

without actually solving the diff erential equation or sketching the solution curves. Consider 

the following example.

1998 BC Multiple Choice #24, Noncalculator

Approximating Solutions to Differential Equations
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 24. Shown above is a slope fi eld for which of the following differential equations?

  (A)   
dy

 ___ 
dx

   � 1 � x  (B)   
dy

 ___ 
dx

   �  x  2   (C)   
dy

 ___ 
dx

   � x � y  (D)   
dy

 ___ 
dx

   �   x __ y    (E)   
dy

 ___ 
dx

   � ln x

 In this problem students could fi nd the family of solution functions by solving 

each diff erential equation. However, this would be time consuming and is not possible for 

part (C). If students can see that the slope of the graph is zero at the point (�2, 2) (or at 

numerous other points and at every point (x, �x), by the process of elimination answer (C) 

is the obvious choice.

2004 AB Free-Response #5, Form B

 Students have been asked to draw the slope fi eld using a diff erential equation and a 

select number of points on recent free-response questions. If students have solved this type 

of problem before, Part A (in the problem below) should now be relatively easy for them to 

complete. Th e AP Calculus Readers are looking for patterns in slopes (positive, negative, 

zero, increasing or decreasing in value); students can approximate these segments without 

any measurements or rulers.

 5. Consider the differential equation   
dy

 ___ 
dx

   �  x  2 (y � 1).

  (a)  On the axes provided, sketch a slope fi eld for the given differential equation 
at the 12 points indicated. (Note:  Use the axes provided in the pink test 
booklet.)

(I have not included parts (b) and (c) of this free-response problem.)

 A slope fi eld can be thought of as an approximation to the graphical solution to a 

diff erential equation; it is one component of the Rule of Four, which calls for describing 

solutions graphically, numerically, analytically, and verbally. Students in Calculus AB 

are required to solve diff erential equations analytically by using techniques that include 

antidiff erentiation and the separation of variables. Since I introduce slope fi elds so early in 
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the course, students should feel comfortable using both graphical and analytical methods 

to solve a number of diff erent types of diff erential equations. I also teach Euler’s Method in 

my AB classes (even though this is a BC topic) and want my students to see this process as a 

numerical approach for approximating a particular solution to a given diff erential equation 

(another component of the Rule of Four).

Euler’s Method (BC Topic)

 Leonhard Euler lived from 1707 to 1783 and made numerous contributions to 

mathematics, acoustics, astronomy, magnetism, and fl uid mechanics. Euler introduced 

symbols for function notation f (x), � , the natural base e, and i �  �

 �1  ,  as well as Euler’s 

Method. Th is technique is used to approximate a particular solution to a given diff erential 

equation when we have:

  a)  A differential equation (this is diffi cult to integrate within the scope of AB/BC 
Calculus course curriculums);

  b) An initial point on our solution curve;

  c) An ending x value; or

  d) A specifi c step-size or increment which may help to determine our ending x value.

 By using the given initial point, we can closely follow our function by drawing a 

number of short line segments and connecting them to help approximate our solution curve. 

Our fi nal point (and in fact any point) will be an approximation of the corresponding (same 

x-value) point on our solution curve.

2003 BC Multiple Choice #5

5.  Let y � f (x) be the solution to the differential equation   
dy

 ___ 
dx

   � x � y with initial condition 

f (1) � 2. What is the approximation for f (2) if Euler’s method is used, starting at x � 1 

with a step size of 0.5?

 (A) 3   (B) 5   (C) 6   (D) 10   (E) 12

Th is diff erential equation is not easy to solve, even for BC students. We know the DE and a 

point on our function (f (1) � 2), so by using Euler’s Method we can approximate f (2). By 

substituting the point (1, 2) into our DE we get a slope of three (3). Our step size �x is equal 

to 0.5, so we will have two steps (line segments) from our original point to approximate f (2). 

By adding our constant �x value (0.5) and our �y values to our starting point (1, 2), we can 

approximate that the point (2, 6) is close to the actual point on our function/solution curve, 

and the correct answer is (C).

Approximating Solutions to Differential Equations



62 

Special Focus: Approximation

x
y

(approximate)
y�

(Slope)
�x �y � y��x

1 2 3 .5 1.5

1.5(1 � 0.5) 3.5(2 � 1.5) 5 .5 2.5

2(1.5 � 0.5) 6(3.5 � 2.5)

 Students can then be led to discover that our approximation for f (2) would be more 

accurate if we were to draw more line segments based upon a smaller step size. As the 

number of steps approaches infi nity, our estimated value will approach the actual value for 

f (2). Th ere are a number of excellent graphing calculator programs that make this process 

easier and faster, and allow students to grasp this concept more eff ectively.

 Both slope fi elds and Euler’s Method use tangent lines to give an approximation for a 

function, either graphically or numerically. Th e concept of local linearity, of which students 

should have a solid grasp at this stage of the course, helps them to better understand these 

two approximation techniques.
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Approximation Using Euler’s Method

John Jensen

Rio Salado College

Tempe, Arizona

Imagine trying to measure a curve using a rigid ruler. Because the contours of the curve 

cannot be followed with the ruler, one would have to make small interval measurements to 

form an estimate. Th is is similar to a process of estimation called Euler’s Method.

Let   
dy

 ___ 
dx

   � f (x, y) (that is, a diff erential equation in x and/or y), and let ( x  
0
 ,  y  

0
 ) be an initial 

condition of its solution. Further, let’s suppose that the diff erential equation cannot be 

solved using the known method of separating variables—or, for that matter, it could be 

unsolvable by any method. Th en, we can only estimate points on the solution curve given 

the information provided. One of the simplest approaches to this kind of estimated solution 

relies on the approximation formula �y 	   
dy

 ___ 
dx

   � �x and is known as Euler’s Method. In 

the example below, we will use a diff erential equation that can be solved by separation of 

variables. One can then readily compare the solution estimates provided by Euler’s Method 

with the actual values of the particular solution.

Illustration:   
dy

 ___ 
dx

   � xy and ( x  
0
 ,  y  

0
 ) � (0, 1)

From our work with diff erentials we know that for a diff erentiable function with �x suffi  ciently 

small, �y 	   
dy

 ___ 
dx

   � �x, which is to say that the curve is approximated by its tangent line over 

a small interval. Extending this reasoning, we can create a recursion formula to develop 

successive tangent-line approximations. Th e formula can by expressed as �y 	   
dy

 ___ 
dx

    � �x, 

each time adding the value of Δy to the previous y value to generate the next point. 

Suppose the values of x increase by 0.1 at each step.

Let �x � 0.1; since   
dy

 ___ 
dx

   = xy, then at (0, 1) we have   
dy

 ___ 
dx

   � 0 and �y 	 0(.1) = 0. Th is brings us 

to an estimate of a nearby point on the solution curve, (0.1, 1). Call this point ( x  
1
 ,  y  

1
 ).

Now we can repeat this process. At (.1, 1),   
dy

 ___ 
dx

   � .1 and �y 	 .1(.1) � .01.

Th us, our next point is ( x  
2
 ,  y  

2
 ) � (.2, 1.01).

As we continue, the y-estimates become more complicated to calculate. It might help to use 

the recursive formula:  y  
n�1

  	  y  
n
  � f �( x  

n
 ) � �x, which computes each new Δy and adds it to 

the predecessor. Here is a closer look at the individual steps in this process:

Approximation Using Euler’s Method
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  f ( x  
n�1

 ) 	  f ( x  
n
 ) �  f �( x  

n
 ) � �x

       f (.1) 	  f (0) �  f �(0) � (.1)

                � 1 � 0 � (.1) � 1

       f (.2) 	  f (.1) � f �(.1) � (.1)

    � 1 � (.1)(.1) � 1.01

       f (.3) 	  f (.2) � f �(.2) � (.1)

    � 1.01 � .0202 � 1.0302

Below is a table that compares the values of these estimates with the actual values of the 

solution curve, y �  e  .5 x  2  .

x 0 0.111 0.2 0.3 0.4 0.5

Euler y 1 1.005 1.01 1.0302 1.0611 1.1036

y �  e  .5 x  2  1 1.005 1.020 1.0462 1.0832 1.1332

For a value of Δx that is not exceptionally small, the method provides estimates that are 

remarkably close. 

Whether Euler’s Method underestimates or overestimates the actual function values is largely 

dependent on concavity. Th e graphs of the functions and the associated Euler tangents 

shown below suggest this relationship. Th ese fi gures also suggest that as we move further 

from the initial point, the error propagated is greater and greater.

When a portion of the curve is concave up, the approximations given by Euler’s Method will 

underestimate the function values; when the graph is concave down, the approximations 

will overestimate the function values. As usual, when we make the increments of x (or steps) 

smaller, we improve the estimate accordingly. Th is fact is demonstrated and amplifi ed by a 

surprising observation below.
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A Postscript on Euler’s Method

Euler’s Method has a well-founded and rather unexpected connection to a familiar 

observation about approximations. Consider the following example.

Given a continuous function f �, fi nd an approximation to f  with the initial condition ( x  
0
 ,  y  

0
 ) 

and evaluate it on the interval [ x  
0
 ,  x  

n
 ], where  x  

n
  � n � �x.

 Solution: For small �x, �y 	 f �( x  
0
 ) � �x. It follows that

   f ( x  
1
 ) 	 f ( x  

0
 ) � f �( x  

0
 ) � �x     (1)

  And, f ( x  
2
 ) 	 f ( x  

1
 ) � f �( x  

1
 ) � �x     (2)

           � f ( x  
0
 ) � f �( x  

0
 ) � �x � f �( x  

1
 ) � �x   (3)

  Continuing in this way, we eventually obtain:

 f ( x  
n
 ) 	 f ( x  

0
 ) � f �( x  

0
 ) � �x � f �( x  

1
 ) � �x � … � f �( x  

n�1
 ) � �x  (4)

Now, using a left  Riemann sum, the area bounded by f � from  x  
0
  to  x  

n
  can be approximated as:

A 	 f �( x  
0
 ) � �x � f �( x  

1
 ) � �x � … �  f �( x  

n�1
 ) � �x     (5)

 But, f ( x  
n
 ) 	 f ( x  

0
 ) � f �( x  

0
 ) � �x � f �( x  

1
 ) � �x � … � f �( x  

n�1
 ) � �x (6)

 Or, f ( x  
n
 ) � f ( x  

0
 ) 	 f �( x  

0
 ) � �x � f �( x  

1
 ) � �x � … � f �( x  

n�1
 ) � �x  (7)

As �x approaches 0, the right-hand side of line (7) becomes A and is equal to the left -hand 

side. Th at is,

 A � f ( x  
n
 ) � f ( x  

0
 )

Th is illustrates the evaluation part of the Fundamental Th eorem of Calculus; that is, 

   � 
 x  

0
 

   

 x  
n
 

  f �(x)dx � f ( x  
n
 ) � f ( x  

0
 ) 

Using the Derivative to Approximate Function Values

In the explorations in the article that follows, we will investigate in more detail tangent-line 

approximations and polynomial approximations. Teachers of AP Calculus AB could use 

just the tangent line part of the activity (though they could certainly do both parts). For AP 

Calculus BC teachers, the second part of the activity provides a nice motivation for Taylor 

polynomial approximations.

Approximation Using Euler’s Method
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The Tangent Line as “The Best” Linear Approximation

Mark Howell

Gonzaga High School

Arlington, VA  

A tangent line to a curve, y � f (x), at a point where x � a has two important properties:  

  • it contains the point (a, f (a))

  • it has slope m � f �(a)

For example, the line y �   1 __ 
2

  x �   1 __ 
2

   is tangent to the graph of f (x) �  �
 x   at x � 1 since it passes 

through (1,1) and has the same slope,   1 __ 
2

  , as  �
 x   has at x � 1. Near the point of tangency, the 

tangent line is close to the curve. So outputs from the line should be close to outputs from the 

curve. In this example, at x � 1.2, the output on the line is 1.1 and the value of  �

 1.2   is about 

1.095445.

Higher-degree polynomials can also be used to approximate function outputs. For example, 

we could make the output and fi rst two derivatives of a polynomial agree with those of  �
 x   at 

x � 1. A polynomial that does the trick is q(x) � �   1 __ 
8

    x  2  �   3 __ 
4

  x �   3 __ 
8

  . Notice how much better 

this quadratic does in approximating  �

 1.2   : q(2.2) � 1.095, accurate to three decimal places. 

One reason polynomial approximations are important is that they can be calculated using 

only the four basic arithmetic operations:  addition, subtraction, multiplication, and division.

Exploration, Part 1: The Tangent Line as “The Best” Linear 
Approximation

In this activity, you will investigate why the tangent line is called Th e Best linear 

approximation to a function at a point. Th is activity can be done with AB or BC students. 

Suggested questions to ask students during the activity appear in italics in the narrative. In 

the fi gure below, the function f (x) � ln(x) is graphed, along with several linear functions 

that intersect the graph of f  at the point (1, 0).
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Any of those lines could be used to approximate the value of ln (x) near x � 1. In this 

activity, we’ll explore how to use linear functions to approximate function values, and why 

we call the tangent line Th e Best.

Now that we have inexpensive calculators to evaluate transcendental functions, it’s harder to 

justify the use of tangent lines to approximate function values. Nonetheless, learning how to 

do so has more value than just to become familiar with an historic footnote. Th e tangent line 

is special for its connection with deep calculus concepts.

In order to use the tangent line to approximate a function, we must be able to write an 

equation for that line. Writing an equation for a tangent line requires that we be able to do 

two things: determine the exact function output at a point, and calculate the exact value 

of the slope at that point. Here we’ll use the function f (x) � ln(x) and the point (1, 0). Th e 

derivative is f �(x) �   1 __ x   and so f �(1) � 1 and our tangent line equation is y � x � 1. We’ll use 

the calculator to investigate the tangent line and some other lines as approximations for ln(x) 

near x � 1.

First, defi ne functions as shown in the screen below, and consider their graphs in the decimal 

window.

What would the error be if each line were used to approximate ln(1)? Why?

We’ll use the calculator to see how well each line does in approximating ln(2).

As you can see from the calculator screens above, the line through (1, 0) with the wrong slope 

actually does a much better job than the tangent line in approximating ln(2)! 

Use the second derivative to explain why the line with slope 0.6 does better at approximating 

ln(2). 

From the graph, this isn’t surprising. Th e line defi ned in Y3 has a slope that is less than the 

slope of ln(x) at x � 1. Th e slope of ln(x) is always decreasing, so it does make sense that at 

some point, the line with a slope that is too small will actually do better. In fact, there is even 

a point where that other line intersects the graph of y � ln(x) and of course, at that point, its 

The Tangent Line as “The Best” Linear Approximation
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error in approximating ln(x) would be zero! In order to see why the tangent line is called Th e 

Best, we’ll need to look more closely.

If you use your calculator to trace to a point that is closer to the point of tangency, say 

x � 1.2, you’ll see that the tangent-line approximation is better.

Let’s defi ne functions that reveal the error in each approximating line. Since our interest is 

focused only on the error, be sure to deselect Y1, Y2, and Y3. You might also want to change 

the graphing style of the tangent-line error, so you can tell it apart from the error of the line 

with slope 0.6.

Explain why each line passes through the point (1, 0).

Notice that in this decimal view, the error from using the line with slope 0.6 seems to be 

closer to the x-axis, indicating that smaller error. What happens if we zoom in at the point of 

tangency, (1, 0)? Make sure your zoom factors are equal to start out, and be sure to position 

the zoom cursor on (1, 0).

Use the second derivative to explain why the tangent-line error is always positive.

Zoom in a couple more times.
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What happened to the tangent-line error as you zoomed in with equal factors?

Notice that as the values of x got closer to 1, the tangent-line error fl attened out. However, 

the error from the other line—though it initially changed shape a bit—as we look closer 

continues to look linear and maintain the same steepness. Referring to the results from 

Appendix: Power Zooming (following the article, “Estimating Derivatives Numerically”), 

these features indicate that the tangent-line error is behaving with a degree greater than 

1, while the other line error is behaving like a degree-one (linear) polynomial. To confi rm 

this, go back to the decimal window, change the zoom factors to do a degree-two power 

zoom (here, we used XFact � 4 and YFact � 16), and try zooming in again (remember to 

reposition the cursor at (1, 0)).

What happened to the tangent-line error as you zoomed in with a degree-two power zoom? 

What happened to the other line error? 

Stunning! Th e tangent-line error keeps the same shape under a degree-two power zoom, 

while the other line error gets steeper. Steep error is bad! 

Th e tangent line is special because its error behaves with a higher degree than that of any 

other line. Higher-degree power functions stay close to zero longer, and that’s good when the 

power function is measuring error. 

Exploration, Part 2:  The Taylor Polynomial as “The Best” Polynomial 
Approximation

Of course, what’s special about any tangent line is that its slope agrees with the function at 

the point of tangency. You could repeat this activity with any diff erentiable function, and 

the results would be the same. Th e error from any line with the wrong slope will behave 

like a degree one polynomial. At worst, the tangent-line error exhibits degree-two behavior. 

Occasionally, it’ll do even better than that. For example, if you use y � x, the tangent line to 

f (x) � sin(x) at x � 0, you’ll see that the error behaves like a degree-three power function. 

Th is fact is intimately connected with the fact that the second derivative of sin(x) is 0 at x � 0. 

The Tangent Line as “The Best” Linear Approximation
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Th e results of this activity lay the foundation for Taylor polynomials, a BC-only topic. Let’s 

use a diff erent function, g(x) �  e  x , and a diff erent point, (0, 1), to explore further. 

Since, g�(x) � g�(x) �  e  x , g�(0) � g�(0) � 1. Th e tangent line at x � 0 is y � x � 1. We’ll use 

another line, y � 1.3x � 1, that goes through (0,1) but has the wrong slope. Take a look at 

the screens below.

Now, to repeat the activity above, defi ne the two error functions. 

Trace over to x � 0.5 on the two error functions, as shown above. You’ll see that Y3 actually 

does a better job approximating  �
 e   than Y2 does! As before, we need to look closer to see 

the diff erence between these two linear approximations. 

Use your calculator to trace to a point that is closer to the point of tangency, say x � 0.2. 

You’ll see that the tangent-line approximation is better. 

Consider a degree-two power zoom at the origin, and you should see the same results 

we saw earlier: Th e tangent-line error eventually maintains its parabolic shape, while the 

error in the other line gets steeper. See Appendix: Power Zooming (following the article 

“Estimating Derivatives Numerically”).

Now we’ll build a quadratic function to approximate  e  x  near x � 0. To do so, we’ll defi ne 

a quadratic whose output, slope, and second derivative all match those of   e  x  at x � 0. Th e 

quadratic that satisfi es these requirements is q(x) �    x  2  __ 
2

   � x � 1.

Verif y that q�(0) � q�(0) � 1.

We’ll also need a quadratic whose output and slope agree with  e  x  at x � 0, but whose second 

derivative is slightly off . Th e quadratic r(x) �    x  2  ___ 
1.7

   � x � 1 will work.
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Verif y that r(x) has the correct output and slope, but that its second derivative is wrong.

Once again, we’ll turn to the calculator to investigate how the error functions behave. First, 

though, you should take a look at Y1, Y2, and Y3 graphed together.

Now, check out the errors at x � 0.5. Notice that both quadratics did better than either one 

of the tangent lines we looked at above.

Explain why Y4 and Y5 both go through the origin.

Again, though, the wrong quadratic did a better job! In this case, the second derivative of Y3 

is greater than 1, the second derivative of  e  x  at x � 0. Notice that the third derivative of  e  x  is 

also 1, and so the second derivative is increasing. So it isn’t altogether surprising that Y3 did 

better, because its second derivative is too big. When we look closer, though, we should see 

the diff erence between Y2 and Y3.

So let’s try a degree-two power zoom at the origin.

Th e error in the good quadratic’s error is fl attening out under the degree-two power zoom, 

while the error in the other quadratic is maintaining the same shape.

What do the graphs tell you about the degree of the behavior of the two errors?

Th is indicates that the degree behavior for the good quadratic is greater than two, while 

the other quadratic’s error is behaving like a degree-two. Th e natural thing to do is to try a 

degree-three power zoom and see whether the good quadratic’s error keeps the same shape.

The Tangent Line as “The Best” Linear Approximation
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Pretty convincing! Th e other quadratic’s error is getting steeper, while the good quadratic’s 

error is maintaining its shape.

Understanding the why for all of this is relatively straightforward if you look at the Taylor 

polynomials involved. We know, for instance, that the Taylor series for ln(x) at x � 1 is 

(x � 1) �   
(x �  1)  2 

 _______ 
2

   �   
(x �  1)  3 

 _______ 
3

   � … . If we subtract this from the expression for the tangent 

line at x � 1, x � 1,  the lowest degree with which we are left  is two. 

Similarly, the McLaurin series for  e  x  is 1 � x �    x  2  __ 
2!

   �    x  3  __ 
3!

   � … . Subtract our good 

quadratic,    x  2  __ 
2

   � x � 1, and the lowest degree with which we are left  is three. Subtract the 

other quadratic,    x  2  ___ 
1.7

   � x � 1, and we still have a degree-two term. Near where they are zero, 

the lower-degree terms dominate the behavior. 

Note:  Th ese activities were inspired by a talk by Don Kreider at TICAP in the early 1990s. 

Reference

Dick, Thomas P., and Charles M. Patton, Calculus of a Single Variable, PWS Publishing Company, 
Boston, 1994.
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Approximating Sums of Series and Values of Functions 
Series Approximations

Ruth Dover

Illinois Mathematics and Science Academy

Aurora, Illinois

 Infi nite series are diffi  cult for many students. Th e title itself suggests at least one 

reason why: Th e sum of an infi nite series is approximated by its associated sequence of 

partial sums. To help students understand the sequence of partial sums, be sure to spend 

some time at the beginning of the study of series fi nding partial sums and the associated 

remainders in some rather simple examples. For example, consider the infi nite geometric 

series 1 �   1 __ 
3

   �   1 __ 
9

   �   1 ___ 
27

   � … , where the common ratio is r �     1 /    
3
  and the fi rst term is a � 1. 

In this case, we can fi nd the infi nite sum using the formula S �   a _____ 
1 � r

   �   1 _______ 
1 � 1/3

   �   3 __ 
2

  . We 

can also fi nd some terms in the sequence of partial sums { S  
n
 }. In general, for the infi nite 

series   � 
k�1

   



     a  
k
 , we defi ne this sequence by letting  S  

1
  �  a  

1
 ,  S  

2
  �  a  

1
  �  a  

2
 , etc., so the  n  th  term 

in this sequence is  S  
n
  �   � 

k�1
   

n

     a  
k
  �  a  

1
  �  a  

2
  � … �  a  

n
 . For the geometric series above, the 

sequence of partial sums becomes  { 1,   4 __ 
3

  ,   13 ___ 
9

  ,   40 ___ 
27

  ,   121 ___ 
81

  ,… } . (Be sure that you understand how 

to construct this sequence. Here,  S  
1
  �  a  

1
  � 1,  S  

2
  �  a  

1
  �  a  

2
  � 1 �   1 __ 

3
   �   4 __ 

3
  , etc.) Using both S 

and the sequence of partial sums, we may calculate the remainders  R  
n
 , the left overs, where 

S �  S  
n
  �  R  

n
 , or  R  

n
  � S �  S  

n
 . For example,  R  

1
  � S �  S  

1
  �   3 __ 

2
   � 1 �   1 __ 

2
  , and 

 R  
2
  � S �  S  

2
  �   3 _ 

2
   �   4 _ 

3
   �   1 _ 

6
  . Here, the sequence { R  

n
 } becomes  {   1 __ 

2
  ,   1 __ 

6
  ,   1 ___ 

18
  ,   1 ___ 

54
  ,   1 ___ 

162
  , … } . Working 

with these values and relationships can help students gain an understanding of the concepts 

of convergence, approximation, and error. In particular, it should be clear that as n grows 

larger,  R  
n
  tends toward 0. 

 Another interesting series that may be used to calculate some values of  S  
n
  and  R  

n
  is 

   �   2 
 ___ 

6
   �   � 

k�1
  




      
1 __ 
 k  2 

   � 1 �   1 __ 
4

   �   1 __ 
9

   � … . Using this formula, students may calculate the sequence of 

partial sums { S  
n
 } and the remainders { R  

n
 }.

 Another strategy for approximating infi nite sums comes from the relationship 

between the partial sums and associated improper integrals. Here, we’ll consider the 

harmonic series   � 
k�1

  



      
1 __ 
k

   and the integral   � 
1
  



     
1 __ x   dx. To illustrate this relationship, let n � 3. 
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Th ree rectangles are drawn in each fi gure with areas 1, 1/2, and 1/3, corresponding to the 

fi rst three terms of the series.

From these graphics, we may write the following:

  � 
1
  
4

     
1 __ x   dx  �   � 

k�1
   

3

    
1 __ 
k

     � 1 �   � 
1
  
3

     
1 __ x   dx

If we consider a greater number of rectangles, we can generalize:

  � 
1
  
n�1

   a(x)dx  �    � 
k�1

   
n

  a (k) �  a  
1
  �   � 

1
  
n

   a(x)dx

If we take limits as n → 
, we obtain:

  � 
1
  



   a(x)dx �   � 
k�1

   



  a (k) �  a  
1
  �   � 

1
  



   a(x)dx

Th is is the essence of the integral test, which tells us that the improper integral   � 
1
  



 a (x)dx and 

the infi nite series   � 
k�1

  



  a (k) �   � 
k�1

  



   a  
k
   behave similarly. In other words, the infi nite series and the 

improper integral both converge or both diverge. Here, our interest is in the fact that we can 

use the two improper integrals on the outsides of our inequalities to approximate the sum of 

the series. Depending upon the size of  a  
1
 , this may give a rather poor window, but fi nding 

upper and lower bounds for the sum of the series in this manner for a few problems can aid 

in the understanding of the nature of approximation.

Alternating Series

 Consider the alternating harmonic series   � 
k�1

  



      
(� 1)  k�1 

 _______ 
k

   � 1 �   1 __ 
2

   �   1 __ 
3

   �   1 __ 
4

   � … . Ask 

students to calculate several terms in the sequence of partial sums  {  S  
n
   }  and then have them 

plot and label these values on the x-axis. For most students, plotting these values convinces 

them that this series will converge. Th e graphs below off er a visualization of the pattern of 

convergence of the  S  
n
 .
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It is important for students to see that each successive term in the sequence of partial sums 

is between the two previous terms in this sequence. And consequently, S must be between 

any two successive terms as well. For example, we can see that the infi nite sum S above must 

satisfy  S  
4
  	 S 	  S  

5
 , and it must also satisfy  S  

6
  	 S 	  S  

5
 . As n increases  a  

n
  �   1 __ n   → 0, and the 

values of  S  
n
  and  S  

n�1
  will become closer together. Th ese values give us both a lower bound 

and an upper bound for S, the infi nite sum. With S trapped in between, we are able to fi nd 

better and better approximations for S.

 It’s time to generalize. Consider an alternating series

  � 
k�1

  



  (  �1)  k�1   a  
k
  �  a  

1
  �  a  

2
  �  a  

3
  �  a  

4
  � … where all  a  

k
  � 0, the terms  a  

k
  form a decreasing 

sequence, and   lim          k → 
    a  
k
  � 0. (Th ese conditions are the hypotheses of the Alternating Series 

Test [AST]. Fortunately, all were true in the previous example.) Assuming these conditions, 

we can take another look at the relationships between  a  
n
 ,  S  

n
 , and  S  

n�1
 . (In the diagram below, 

n is an even integer.)
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Th is diagram shows us that the error, the distance between the actual sum S and the 

approximation  S  
n
 , must be shorter than the distance represented by  a  

n�1
  � 0.

 For example, consider S �   � 
k�1

  



      
(�1 )  k�1 

 _______ 
 k  2 

  . If we approximate S by

  S  
5
  � 3019/3600 	 0.8386, then the error will be less than  a  

6
 , the positive part of the 

fi rst unused term in the series. Th at is, Error �  � S �  S  
5
  �  	  a  

6
  �   1 ___ 

36
   � 0.0278. If desired, one 

can continue to fi nd bounds on S.

 � S �  S  
5
  �  	 .0278

 � S � .8386 �  	 .0278

�0.0278 	 S � .8386 	 .0278

.8108 	 S 	 .8665

Th is off ers a systematic method to fi nd bounds on S. Alternatively, we can note that S must 

also be less than  S  
5
  since   1 ___ 

36
   will be subtracted from  S  

5
  to give  S  

6
 . Th us, we may write 

.8018 	 S 	  S  
5
  � .8386. Th is gives us a smaller interval for S. One could repeat these 

calculations for  S  
10

  or  S  
20

 , for example. Seeing how the error becomes smaller and the 

window for S becomes narrower as n → 
 will help to give a feel for error and how quickly 

the particular alternating series converges. (Th e AP syllabus asks only for whether a series 

converges or diverges. However, understanding that some series approach their sum much 

faster than others can aid in developing a deeper understanding of infi nite series.) 

 Calculating an upper bound for the error of an alternating series that satisfi es the 

conditions of the alternating series test is a rather simple mechanical procedure. Use 12 

terms? Find the size of  a  
13

 . However, noting and checking the hypotheses of the Alternating 

Series Test is important, yet oft en forgotten. To show that a series with both positive and 

negative terms may converge even if the Alternating Series Test and the error calculation 

do not apply, it is interesting to use technology to explore the sequence of partial sums 

for the series   � 
k�1

  



      
sin(k)

 _____ 
k

  . It is important to remind students to check the hypotheses of the 

Alternating Series Test. In this case,  �   sin(k)
 _____ 

k
   �  is not a decreasing sequence, nor is   

sin(k)
 _____ 

k
   even 

an alternating sequence, although the series does in fact converge. 

 Another important concept in this study is the relationship between the number of 

terms and the size of the error. If an alternating series satisfi es the conditions of the AST, 

knowing one eff ectively determines the other. In the example above, the number of terms 

was given and an upper bound for the error was found. Alternatively, one could give an 

upper bound for the error and ask for the number of terms necessary to ensure this. For 

example, in the series   � 
k�1

  



     
(�1 )  k�1 

 _______ 
 k  2 

   , if we wish to approximate S with an error less than 

  1 ___ 
200

  , it is suffi  cient to use at least  S  
14

 , the sum of the fi rst 14 terms, because the size of the  15  th  
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term is   1 ___ 
 15  2 

   �   1 ___ 
255

   	   1 ___ 
200

  . Note that  a  
14

  �   1 ___ 
 14  2 

   �   1 ___ 
200

  , so using  S  
13

  may not be adequate to 

ensure a suffi  ciently close approximation.

Taylor Series

 Th e Taylor series for a function ƒ with infi nitely many derivatives at x � a is given by 

  � 
k�0

   



       
 f   (k) (a)

 _____ 
k!

    (x � a)  k  � f (a) � f �(a) � (x � a) �   
f �(a)

 ____ 
2!

   (x �  a)  2  �   
f �(a)

 _____ 
3!

   (x �  a)  3  � …

A Maclaurin series is the special case of the Taylor series where a � 0. Previously, we 

approximated the sum of an infi nite series with the sum of a fi nite number of terms,  S  
n
 . Here, 

we approximate a Taylor series with a Taylor polynomial.

 To help understand the convergence of Taylor series, add more terms and sketch 

more graphs! Th is is essential for seeing how Taylor-series approximations of functions grow 

better as n grows larger. What does better mean? In this context, it means that for a given 

value of x appropriately near a, the approximation given by evaluating a Taylor polynomial 

at this x will grow closer to the actual value of ƒ(x) as the polynomial is formed using more 

and more terms of the series. Th is will be clearer to students when they make calculations 

for specifi c values of x. In the previous discussion of alternating series, we mentioned the 

relationship between the number of terms and an upper bound for the error. With Taylor 

series, another piece is included:  the value of x. Knowing two of these three—the value of x, 

the number of terms, and an upper bound for the error—will allow us to fi nd restrictions on 

the third piece of information. Some examples follow.

 If the Taylor series is alternating (with the required restrictions) for a given value of 

x, then the calculations are the same as for other alternating series. Th ese series off er many 

opportunities for calculating errors. Common functions with alternating Maclaurin series 

(a � 0) include sin x, cos x, and if x � 0, ln(1 � x).

 For example, let’s approximate sin(1) with three nonzero terms of the Maclaurin 

series for sin x. We use

sin(x) 	 x �    x  3  __ 
3!

   �    x  5  __ 
5!

  

sin(1) 	 1 �   1 __ 
3!

   �   1 __ 
5!

   	 .842

and the error must be less than the absolute value of the fourth term    x  7  ___ 
7! 

   evaluated at x � 1,  

a  
4
  �   1 __ 

7!
   	 .000198. Th is may be verifi ed by fi nding sin(1) with a calculator.

 As another example, assume we wish to use three terms of the Maclaurin expansion 

for ƒ(x) � ln(1 � x) and we want to be sure that the error will be less than 0.005. If we 
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assume x � 0, what are the possibilities for x? Th e series for f  is x �    x  2  __ 
2

   �    x  3  __ 
3

   �    x  4  __ 
4

   � … .

Th us, using three terms means that the upper bound for the error will be  a  
4
  �    x  4  __ 

4
   for 

appropriate values of x. If we force this to be less than 0.005, then this will guarantee that the 

error will also be less than 0.005. We have  a  
4
  �    x  4  __ 

4
   	 0.005 ⇒ 0 	 x 	 .376. (Recall that we 

assumed x � 0. If not, then the series won’t be alternating, and we cannot use this approach 

to bounding the size of the error.)

The Lagrange Error Bound

 Th e situation changes when the series is not alternating. Th is brings us to the 

Lagrange error bound. Th is may appear in either of two forms, depending upon the 

textbook. Making use of either form eff ectively comes down to the same idea. 

 Some texts present Taylor’s Th eorem, a statement that gives the formation of the series 

and  R  
n
 , where  R  

n
  represents the remainder aft er the nth degree term of the sequence of partial 

sums of the Taylor series. Th is is given as  R  
n
 (x) �   

 f   (n�1) (c)
 _______ 

(n � 1)!
   (x � a )  n�1  for some c between 

a and x, and is oft en identifi ed as Lagrange’s form of the remainder. Taylor’s Th eorem is an 

existence theorem. Th e value of c may never be found, implying that the precise remainder 

may not be found. We seek instead an upper bound for the remainder, oft en called the 

Lagrange error bound. Since we are searching for an upper bound for  �  R  
n
  � , where 

 �  R  
n
 (x) �  �   

 �  f   (n�1) (c) � 
 _________ 

(n � 1)!
     � x � a �   n�1 , then we need to fi nd an upper bound for  �  f   (n�1) (c) � , and 

then do a few other manageable calculations.

 Many other texts begin by asking the reader to consider  �  f   (n�1) (x) �  �  K  
n�1

 , where  

K  
n�1

  is an upper bound for the (n � 1)st derivative, oft en without the restrictions on x in the 

previous form. Th en they note that the error found by using the nth degree Taylor polynomial 

will be less than or equal to   
 K  

n�1
 
 _______ 

(n � 1)!
     � x � a �   n�1 . Th ese two forms are essentially the same, 

even with the varying restrictions on x, as the following two examples will illustrate.

 We can use this approach to fi nd an upper bound for an approximation for  e  x . For 

example, assume we will use terms of the Maclaurin series through n � 8 to approximate  e  2 . 

Here, with a � 0 and x � 2, to deal with the ninth derivative, we need to consider the fi rst 

form with 0 	 c 	 2. (Without the restriction, there is no upper bound for the derivative 

of f (x) �  e  x .) We have  �  R  
8
  �  �    e  c  �  2  9  _____ 

9!
   	    e  2  �  2  9  _____ 

9!
  . We also know that e 	 3 (since we need to 

assume something!), and  e  2  	 9, so that  �  R  
8
  �  �    e  c  �  2  9  _____ 

9!
   	   9 �  2  9  _____ 

9!
   � .0127.

 As another type of example, let g be a diff erentiable function with  g  (n) (0) �   n ______ 
2n � 1

   

and  �  g  (n) (x) �  � n � 1 for all x. If we calculate the derivatives, we can construct the Maclaurin 

series for g, showing terms through n � 3, to give
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g(0) � g�(0) � x � g�(0) �    x  2  __ 
2!

   � g�(0) �    x  3  __ 
3!

   � …

0 �   1 __ 
3

   � x �   2 __ 
5

   �    x  2  __ 
2

   �   3 __ 
7

   �    x  3  __ 
3!

   � …

  x __ 
3

   �    x  2  __ 
5

   �    x  3  ___ 
14

   � …

If terms through n � 3 are used to approximate g (1/2), we can fi nd an upper bound for the 

error. Th is requires fi nding an upper bound  K  
4
  for  �  g  (4) (x) � . We have  �  g  (4) (x) �  � 4 � 1 � 5. 

Combining this result with the rest of the Lagrange form gives

Error �  �  g  (4) (x) �  �   
  � x �   4 

 ____ 
4!

   � 5 �   
(1/ 2)  4 

 _____ 
4!

   �   5 ___ 
384

   � .0130

 Dealing with approximation and error estimates requires patience and a great deal 

of careful work. Using technology is essential to deepening one’s understanding of infi nite 

series. Plotting the sequence of partial sums, graphing a Taylor polynomial along with the 

original function, or calculating an upper bound for an error—all of these can help to check 

for reasonableness and, above all, they allow us to more fully see how mathematics works.

Approximating Sums of Series and Values of Functions Series Approximations
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Instructional Unit: Taylor Polynomial Approximation of 
Functions

Jim Hartman

Th e College of Wooster

Wooster, Ohio

Focus:  How to use Taylor polynomials to approximate the value of a function and the error 

made in that approximation.

Audience: AP Calculus students

Context

Entry Behaviors

Students should be able to compute the derivative and higher-order derivatives of a function 

at a point. Th ey should also be able to use their graphing calculators to evaluate a function at 

a point and construct the graph of a function in a specifi c viewing window. Students should 

be able to fi nd the maximum value of a continuous function on a given interval.

Prior Knowledge

Students should know various functions, their derivatives, and higher-order derivatives. 

Th ey should also be familiar with what the fi rst and second derivatives say about the shape of 

the graph of a function. Students should be familiar with factorial function. Students should 

also understand the Mean Value Th eorem.

Academic Motivation

It is assumed that students have found approximate values of various functions by using 

their calculators. Th e motivation for this topic is to provide an arithmetic technique to 

approximate the value of a function at a point.

Education and Ability

Students should have taken the typical high school mathematics courses of Algebra I, 

Algebra II, precalculus, and Calculus I or the equivalent of Calculus AB.

Performance Setting

Social Aspects

Th is should be used in an AP Calculus classroom where a teacher is guiding the exploration 

of ideas.
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Physical Aspects

Th e teacher should have the ability to display visual information and written information. 

Each student should have his or her own graphing calculator.

Relevance

Th is unit is relevant to anyone  who would like to learn how transcendental functions can be 

approximated arithmetically and with a desire to explore the concepts of Taylor series and 

power series.

Duration

Th is unit should take three to fi ve days to complete.

Accessibility and Adaptability

Th is unit is accessible to anyone with the prior knowledge and a computational device. 

While graphing calculators are the primary computational tool, anyone with appropriate 

soft ware could adapt this lesson to his or her setting. Students with a scientifi c calculator 

could do most of the work here but might not be able to explore the more geometric parts of 

the lesson.

Goals and Standards

Essential Question

Th ere are two essential questions addressed by this unit. How does one approximate 

numerically the values of a transcendental function, and how much error is made in that 

approximation?

Goals

Th e goal is for students to be able to construct the nth-degree Taylor polynomial of a 

function, use it to approximate the value of a function at a point, give upper and lower 

bounds on that actual value (error in approximation), and decide what degree polynomial is 

necessary to achieve a certain level of error.

Alignment with the AP Calculus Syllabus

Students are required by the AP Calculus Syllabus to be able to construct and use Taylor 

polynomials to approximate the value of a function at a point. Th ey are also required to be 

familiar with the Lagrange form of the error (remainder) term.

Instructional Unit: Taylor Polynomial Approximation of Functions
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Taylor Polynomial Approximation of Functions

Introduction

1. Motivation—Approximate the value of  e  0.1  using only simple arithmetic. 

 Use this example to develop the following ideas.

2. Recall the approximation of the value of a function using the tangent line (local linearity). 

f (x) � f (a) � f �(a)(x � a)

 Thus, using f (x) �  e  x  and a � 0 we could approximate  e  0.1  �  f (0.1) using the tangent 

line. We get f (0.1) 	 f (0) � f �(0)(0.1 � 0) � 1 � 1 � (0.1) � 1.1. Students can compare 

this approximation with a calculator value. Using Maple, I get  e  0.1  	 1.105170918.

3. Consider the geometric interpretation of this approximation.

 The lower curve is the tangent line given by  T  
1
 (x) � f (0) � f �(0) � (x � 0) � 1 � x. Thus 

we know that our approximate arithmetical value will actually underestimate the true 

value of  e  0.1 .

4. We could obtain a better approximation if we could somehow account for the curve 

in the natural exponential function. You could ask students to discuss this curve and 

indicate how they might determine how much curve there is. This should lead to a 

discussion of concavity and the second derivative.

5. The tangent line shares two characteristics of a function: (1) It has the same value as the 

function at a point, and (2) It has the same slope at that point. In the example above, 

f (x) �  e  x  and  T  
1
 (x) � 1 � x have the same value and same slope (derivative) at a � 0. 

What if we now tried to construct a simple function (a polynomial) that would have the 

same value, slope, and concavity (curvature) as f (x) �  e  x  at a � 0?

6. We should try the polynomial  T  
2
 (x) � a � bx � c x  2  because we want to satisfy three 

conditions at a � 0, and there are three unknowns in  T  
2
 (x). We want to satisfy

 i) 1 �  e  0  � f (0) �  T  
2
 (0) � a;

 ii) 1 �  e  0  � f �(0) �  T  
2
  �(0) � b � 2c � 0 � b; and

 iii) 1 �  e  0  � f �(0) �  T  
2
  �(0) � 2c.
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 Thus we have  T  
2
 (x) � 1 � x �   1 __ 

2
   x  2  and so

  e  0.1  � f (0.1) 	  T  
2
 (0.1) � 1 � 1 � (0.1) �   1 __ 

2
  (0. 1)  2  � 1.105. Since we already have an 

approximate value from the calculator, we can compare and see that this is better than 

the original linear approximation.

7. We can examine this geometrically again.

 Students should confirm that the parabolic (second-degree polynomial) approximation is 

the one that lies between the linear approximation and the actual function.

8. We again have an under approximation since  T  
2
  �(x) � 1 and a constant second derivative 

does not account for the increasing (changing) curvature in the natural exponential 

function.

9. This should lead to the idea of a third-degree approximation 

 T  
3
 (x) � a � bx �  cx  2  �  dx  3  satisfying

 i) 1 �  e  0  � f (0) �  T  
3
 (0) � a;

 ii) 1 �  e  0  � f �(0) �  T  
3
  �(0) � b � 2c � 0 � 3d � 0 � b;

 iii) 1 �  e  0  � f �(0) �  T  
3
  �(0) � 2c � 6d � 0 � 2c; and

 iv) 1 �  e  0  � f �(0) �  T  
3
  �(0) � 6d.

 This leads, then, to  T  
3
 (x) � 1 � x �   1 __ 

2
   x  2  �   1 __ 

6
   x  3  and 

  e  0.1  � f (0.1) 	  T  
3
 (0.1) � 1 � 1 � (0.1) �   1 __ 

2
  (0. 1)  2  �   1 _ 

6
   (0.1 )  3  	 1.105166667.

10. Ask students to find  T  
4
 (x) and   T  

5
 (x). Can they generalize to  T  

n
 (x)?

11. Now use the same approach to approximate  �

 4.2   using the function defined by 

f (x) �  �
 x  . Note that here we need to adapt to the idea that we are approximating 

f (x) �  �
 x   near a � 4. Thus the tangent-line approximation will be f (x) 	  T  
1
 (x) � f (4) � 

f �(4)(x � 4). When we move to the second-degree approximation and others we will use 

 T  
2
 (x) �  a  

0
  �  a  

1
 (x � 4) �  a  

2
 (x  � 4)  2  and  T  

n
 (x) �  a  

0
  �  a  

1
 (x � 4) �  a  

2
 (x �  4)  2  � … � 

 a  
n
 (x �  4)  n  in general, respectively. Expanding  T  

n
 (x) in powers of (x � 4) rather than in 

powers of x simplifies the derivation of the coefficients.

Instructional Unit: Taylor Polynomial Approximation of Functions
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12. This might be a good time for students to find some Taylor polynomials on their own. 

They could complete the table found in Appendix 1.

13. It’s at this point we can verify that the nth degree Taylor polynomial for a function f  in 

general is given by

  T  
n
 (x) � f (a) �    

f �(a)
 ____ 

1!
   (x � a) �    

f �(a)
 ____ 

2!
   (x �  a)  2  �   

f �(a)
 ____ 

3!
   (x �  a)  3  � … �   

 f   (n) (a)
 _____ 

n!
   (x  � a)  n .

 To do this, we need to use this formula to show that the value of the function f (x) agrees 

with the value of  T  
n
 (x) at x � a and that the first n derivatives of these two functions 

also agree at x � a. Note that this nth-degree Taylor polynomial requires f  to be n times 

differentiable at x � a.

Error Analysis

14. The error made in approximating a function f  by its nth degree Taylor polynomial  T  
n
  

is given by  R  
n
 (x) � f (x) �  T  

n
 (x). One can begin to explore this error using a graphical 

approach. If we use the example above (f (x) �  e  x ) we would have  R  
2
 (x) �  e  x  � (1 � x). 

Plotting this near x � 0, we get

Students can use the trace feature on their calculators to fi nd the error at any particular value 

of x. We can also see from this graph that if we specify a particular tolerance (maximum 

error) that this will be obtained for values of x suffi  ciently close to. For example, we could 

construct, or have students construct, the following table for the example above.

Maximum 

value of error
0.05 0.005 0.0005

Values of x 

(approximately)
�0.3338 	 x 	 0.3004 �0.1016 	 x 	 0.0983 �0.0317 	 x 	 0.0314

 For clarity, this table indicates that  �  R  
1
 (x) �  	 0.005 when �0.1016 	 x 	 0.0983.

15. We can continue to explore this error geometrically and numerically for higher-degree 

Taylor polynomials. For the example f (x) �  e  x  with a � 0, we can construct the table
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Degree of 

polynomial 

1 n

Maximum 

error for 

�1 � x � 1

Interval with 

error 	 0.005

Graph of  R  
n
 (x)

2 0.21828183
�0.31889 	 x 

	 0.30280

3 0.05161517
�0.60595 	 x 

	 0.57134

4 0.00994850
�0.92978 	 x 

	 0.87551

We can have students construct such tables for various functions at particular values of a. A 

worksheet for them to complete is Appendix 2.

16. It would also be appropriate to show students a few applets that are available for Taylor 

polynomial approximation. Some sites to consider:

 a) http://www.math.jhu.edu/�jrm/vander/stable/TPTest.html

 b) http://mathforum.org/mathtools/cell/c,15.18.1,ALL,ALL/

 c) http://www.hostsrv.com/webmaa/app1/MSPScripts/webm1010/taylor.jsp

 d) http://www.ma.utexas.edu/cgi-pub/kawasaki/plain/infSeries/6.html

Further Analysis of Error

17. If we continue to work with the initial example and examine the graphs of the errors for 

the various degrees of the Taylor polynomials, it appears that the graph of the error for 

n � 1 is quadratic in nature, the graph of the error for n � 2 is cubic in nature, the 

Instructional Unit: Taylor Polynomial Approximation of Functions
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graph of the error for n � 3 is quartic in nature, etc. To verify this you can do power 

zooming on the calculator as explained in the earlier article “The Tangent Line as ‘The 

Best’ Linear Approximation.” Thus students can have some idea of the nature of the 

error that is incurred with a Taylor polynomial approximation of a function prior to 

seeing the Lagrange form for the remainder. In general, one should achieve an 

“n � 1” degree error when using  T  
n
 . This won’t always be true; for example, a third-

degree approximation for the sin function at a � 0 will give an error of fifth-degree 

nature rather than fourth-degree nature.

18. Further analysis of the error can be done symbolically through the Lagrange form for 

the remainder. This says that the error made in approximating f (x) by the nth degree 

Taylor polynomial  T  
n
 (x) is given by  R  

n
 (x) � f (x) �  T  

n
 (x) �    

 f   (n�1) ( c  
x
 )
 _______ 

(n � 1)!
   (x �  a)  n�1  for some 

 c  
x
  between a and x. Proof of this is given in Appendix 3, along with a corollary that 

allows us to determine what degree Taylor polynomial is needed to guarantee a certain 

error in approximation on a given interval. Students are required to know the Lagrange 

form for the error made in approximation but are not responsible for the proof of this.

19. Let’s consider the original example and use the corollary to the theorem in Appendix 3. 

Suppose we wish to approximate f (x) �  e  x  by a Taylor polynomial centered at a � 0 with 

a maximum error of 0.00005 on the interval [�2, 2]. We know that  f   (n�1) (x) �  e  x , so on 

the interval [�2, 2] we will have  e  �2  �   f   (n�1) (x) �  e  2  giving  �  f   (n�1) (x) �  �  e  2  on 

[�2, 2]. The maximum error of 0.00005 will be assured if we have    e  2  _______ 
(n � 1)!

   �  2  n�1  	 

0.00005. By just checking values of n in this formula, this analysis leads to a minimal 

degree polynomial of degree n � 11. Thus  T  
11

 (x) will approximate f (x) �  e  x  with an 

error less than 0.00005 for all x in [�2, 2]. Appendix 4 gives a worksheet that students 

can use to do this kind of analysis. The table is incomplete so that they can choose their 

own values. 

20. Note that the Lagrange error formula can also be used to estimate the maximum error 

achieved by using the nth-degree Taylor polynomial in approximation for a particular 

value of n in place of the graphical approach to finding this error. However, this method 

of analysis might lead to an estimated error that is much greater than the actual error 

obtained.
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Appendix 1: Taylor polynomials Worksheet

Find the specifi ed Taylor polynomials at the given value of a.

Function a  T  
1
 (x)  T  

2
 (x)  T  

3
 (x)  T  

4
 (x)  T  

n
 (x)

f (x) �   1 _ x  1

f (x) � sin(x) 0

f (x) � cos(x) 0

f (x) � 1n(1 � x) 0

f (x) � cos(x) ��

f (x) �   1
 ______ 

(1 � x)
  0

f (x) � 1n(�x) �1

f (x) � 1 � x �  x  2  �  x  3 4

Instructional Unit: Taylor Polynomial Approximation of Functions
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Appendix 2: Error in Taylor Polynomial Approximation 
Worksheet

f (x) � a �

Degree of 

polynomial 

n

Maximum error for 

�1 � x � 1
Interval with error 	 0.005 Graph of  R  

n
 (x)
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Appendix 3: Proof of Taylor’s Theorem with Lagrange’s 
Remainder

Taylor’s Theorem with Lagrange’s Remainder

Let f  be n � 1 times diff erentiable on the interval (a � r, a � r). For each x in (a � r, a � r) 

there is a point  c  
x
  between a and x so that

f (x)  � f (a) �   
f �(a)

 ____ 
1!

   (x � a) �   
f �(a)

 ____ 
2!

   (x � a )  2  �   
f �(a)

 ____ 
3!

   (x � a )  3  � … �   
  f   (n) (a)

 _____ 
n!

   (x �  a)  n  

�     f   
(n�1) ( c  

x
 ) _______ 

(n � 1)!
   (x �  a)  n�1 .

Proof:

Fix a value of x � a in (a � r, a � r), and choose K so that

f (x)  � f (a) �   
f �(a)

 ____ 
1!

   (x � a) �   
f �(a)

 ____ 
2!

   (x � a )  2  �   
f �(a)

 ____ 
3!

   (x � a )  3  � … �   
  f   (n) (a)

 _____ 
n!

   (x �  a)  n  

�   K ______ 
(n � 1)!

   (x �  a)  n�1 .

Defi ne a function g on the closed interval from a to x by

g(t)  � f (x) � f (t) �   
f �(t)

 ____ 
1!

   (x � t) �   
f �(t)

 ____ 
2!

   (x �  t)  2  �   
f �(t)

 ____ 
3!

   (x �  t)  3  � … �    
  f   (n) (t)

 _____ 
n!

   (x �  t)  n  

�   K ______ 
(n � 1)!

   (x �  t)  n�1 .

Now g(x) � 0 � g(a) and since g is diff erentiable on the open interval from a to x, by Rolle’s 

Th eorem there is some point  c  
x
  between a and x with g �( c  

x
 ) � 0. We see that 

g�(t)  � f �(t) � (�f �(t)) � f �(t)(x � t) � … �   � �    f   (n) (t) ______ 
(n � 1)!

   (x �  t)  n�1  �  �   
 f   (n�1) (t)

 ______ 
n!

   (x � t )  n  

�   � �   K __ 
n!

  (x �  t)  n  � .

Note that this is a collapsing sum and simplifi es to g�(t) � �   
 f   (n�1) (t)

 ______ 
n!

   (x � t )  n  �   K __ 
n!

   (x �  t)  n . 

With g�( c  
x
 ) � 0 we get K �  f   (n�1) ( c  

x
 ), the desired result.

Corollary

Let f  be n � 1 times diff erentiable on the interval [a � r, a � r] with   �  f   (n�1) (x) �  � M for 

all x in [a � r, a � r]. Th en  �  R  
n
 (x) �  �  � f (x) �  T  

n
 (x) �  �   M

 ______ 
(n � 1)!

     � x � a �   n�1  for all x in 

[a � r, a � r].

Proof:

Th is comes immediately from the theorem above by replacing  f   (n�1) ( c  
x
 ) with M.
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Note: Th e proof of the theorem above is given in Calculus with Analytic Geometry, 5th 

Edition, by C.H. Edwards and David E. Penney, Prentice Hall Inc., 1997. As noted there, the 

proof uses a “trick” suggested by C. R. MacCluer.
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Appendix 4: Finding the Degree for Desired Error 
Worksheet

Function a Interval
Maximum 

Error Desired
 f   (n) (x)

n guaranteed 

to achieve 

error

f (x) � sin(x) a � 0 [�� , � ]   0.00005

f (x) � 1n(x) a � 1  [   1 _ 
2
  , 2 ] 0.0005

f (x) �  �
 x  a � 4 [1, 9] 0.0001

Instructional Unit: Taylor Polynomial Approximation of Functions
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years Brendan has run a mentoring program for new AP Statistics teachers across Maine for 

the Maine Department of Education. He is a leader in distance learning and was featured in 

Newsweek magazine in May 2005.

Brendan has a BSCE from Tuft s University as well as an MBA from Bentley College. He has 

a summer house in Bingham, Maine, and in his spare time is a licensed whitewater raft ing 

guide. He enjoys traveling and has raft ed on 75 rivers in fi ve countries. Brendan is currently 

teaching at John Bapst Memorial High School in Bangor, Maine, and is active in the Maine 

Association of Math Teams.

Larry Riddle

Agnes Scott College

Decatur, Georgia

Larry Riddle is a professor of mathematics at Agnes Scott College, a liberal arts college for 

women located in metropolitan Atlanta. He served as the Chief Reader for the AP Calculus 

Exam from 2000 to 2003, and became chair of the AP Calculus Development Committee in 

2005. His interest in the use of technology in teaching mathematics has led him to develop 

a soft ware program called IF S Construction Kit for teaching about the fractals associated 

with iterated function systems. He and his students have also constructed an extensive Web 

site containing biographies of more than 170 woman mathematicians that demonstrate the 

numerous achievements of women in mathematics.
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