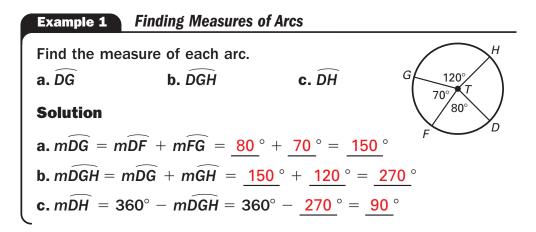


- **Goals** Use properties of arcs of circles.
 - Use properties of chords of circles.

	ABULARY
Centr	al angle An angle whose vertex is the center of a circle
Minoi	r arc Part of a circle that measures less than 180°
Majoı <mark>360</mark> °	r arc Part of a circle that measures between 180° and
	circle An arc whose endpoints are the endpoints of a eter of the circle
Meas	ure of a minor arc The measure of its central angle
	ure of a major arc The difference between 360° and the sure of its associated minor arc
•	ruent arcs Two arcs of the same circle or of congruent es that have the same measure
	ULATE 26: ARC ADDITION POSTULATE
	neasure of an arc formed by two ent arcs is the sum of the measures

 $\widehat{mABC} = \underline{mAB} + \underline{mBC}$



THEOREM 10.4

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

 $\overrightarrow{AB} \cong \overrightarrow{BC}$ if and only if $\overrightarrow{AB} \cong \overrightarrow{BC}$.

THEOREM 10.5

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

 $\overline{DE} \cong \overline{EF}, \ \overline{DG} \cong \overline{GF}$

THEOREM 10.6

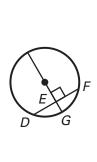
If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

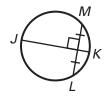
 \overline{JK} is a diameter of the circle.

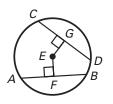
THEOREM 10.7

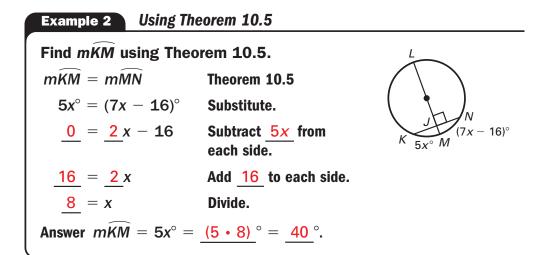
In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

 $\overline{AB} \cong \overline{CD}$ if and only if $\underline{\overline{EF}} \cong \underline{\overline{EG}}$.









Example 3 Using Theorem 10.7

Find QS if MN = 16, RT = 16, and NQ = 10. Because \overline{MN} and \overline{RT} are congruent chords, they are equidistant from the center. So, $\overline{PQ} \cong \overline{QS}$. To find QS, first find PN. $\overline{PQ} \perp \overline{MN}$, so \overline{PQ} bisects \overline{MN} . Because MN = 16, $PN = \frac{16}{2} = 8$. Then use PN to find PQ. PN = 8 and NQ = 10, so $\triangle NPQ$ is a 6 - 8 - 10 right triangle. So, PQ = 6. Finally, use PQ to find QS. Answer Because $\overline{QS} \cong \overline{PQ}$, QS = PQ = 6.

Checkpoint Complete the following exercises.

