Definitions and
 Biconditional Statements

Goals - Recognize and use definitions.

- Recognize and use biconditional statements.

VOCABULARY

Perpendicular lines Two lines are perpendicular lines if they intersect to form a right angle.

Line perpendicular to a plane A line perpendicular to a plane is a line that intersects the plane in a point and is perpendicular to every line in the plane that intersects it.

Biconditional statement A biconditional statement is a statement that contains the phrase "if and only if."

Example 1 Using Definitions

Decide whether each statement about the diagram is true. Explain your answer using the definitions you have learned.
a. $\angle K L J$ and $\angle K J L$ are complementary.
b. $\overleftrightarrow{K L}$ and $\overleftrightarrow{L J}$ are perpendicular.
c. $\angle M K J$ is a right angle.

Solution

a. This statement is true. Two angles are complementary if the sum of their measures is $90^{\circ} . m \angle K L J+m \angle K J L=90^{\circ}$, so the angles are complementary.
b. This statement is false. $\overleftrightarrow{K L}$ and $\overleftrightarrow{L J}$ do not intersect to form a right angle. So, the lines are not perpendicular.
c. This statement is true. $\angle M K J$ and $\angle N K L$ are vertical angles. $\angle N K L$ is a right angle. Because vertical angles are congruent, $\angle M K J$ is a right angle.

C | checkpoint Use the diagram in Example 1 to decide whether |
| :--- |
| the statement is true. Explain your answer using the |
| definitions you have learned. |

1. $\angle K J L$ is an acute angle.	2. Point N is in the interior of $\angle K L J$.
True. An acute angle has a measure between 0° and 90°. The measure of $\angle K J L$ is 54°, so the angle is acute.	False. A point is in the interior of an angle if it is between points that lie on each side of the angle. Point N is in the exterior of $\angle K L J$.

Example 2 Rewriting a Biconditional Statement

Rewrite the following biconditional statement as a conditional statement and its converse.

An angle is a straight angle if and only if its measure is 180°.
Conditional statement: If an angle is a straight angle, then its measure is 180°.
Converse: If the measure of an angle is 180°, then the angle is a straight angle.

Example 3 Analyzing a Biconditional Statement

Consider the following statement: $\boldsymbol{x}=2$ if and only if $3 x+5 x=10 x-2 x$.
a. Is this a biconditional statement?
b. Is the statement true?

Solution

a. The statement is biconditional because it contains the phrase "if and only if".
b. The statement can be rewritten as the following statement and its converse.
values other than $x=2$ that make the equation true?

Conditional statement: If $x=2$, then $3 x+5 x=10 x-2 x$. Converse: If $3 x+5 x=\overline{10 x-2 x}$, then $x=2$.

The first statement is true. The second statement is false. So, the biconditional statement is false.

Each of the following statements is true. Write the converse of each statement and decide whether the converse is true or false. If the converse is true, combine it with the original statement to form a true biconditional statement. If the converse is false, state a counterexample.
a. If $\sqrt{x}=1$, then $x=1$.
b. If two angles are vertical angles, then they are congruent.

Solution

a. Converse: If $x=1$, then $\sqrt{x}=1$. The converse is true. Biconditional statement: $\sqrt{x}=1$ if and only if $x=1$.
b. Converse: If two angles are congruent, then they are vertical angles. The converse is false. As a counterexample, consider the figure at the right. $\angle B A C$ and $\angle B C A$ are congruent, but they are not vertical angles.

Checkpoint Complete the following exercises.
3. Rewrite the following biconditional statement as a conditional statement and its converse.

Two angles are supplementary if and only if the sum of their measures is 180°.
Conditional statement: If two angles are supplementary, then the sum of their measures is 180°.
Converse: If the sum of the measures of two angles is 180°, then the angles are supplementary.
4. Consider the following statement: Two segments are congruent if and only if they have the same length.
a. Is the statement biconditional?
b. Is the statement true or false?
true

