The Making of a Slopes Graph

Name:___

Yesterday, we used limits to calculate the exact slope of a curve at an individual x-value. Today we will calculate many more of these individual slopes and see what happens when we plot them on a graph.

1. Let f(x) = -3x + 2. Sketch the graph below.

- 2. Find the slope of the curve f at x =_____ using the limit definition of slope at a point.
- 3. Use a dot sticker to plot your value from q. 2 on our "slopes" graph. Copy the class graph to the right of your original graph.
- 4. What do you think will be the slope of the curve f at x = 53? Why do you think so?

In questions 5 and 6, we are going to explore the "slopes" graph of two new functions, $g(x) = x^2$ and $h(x) = x^3$.

5. Graph g(x) below.

Let's start by plotting several slope values for g(x).

- a. Find the slope of the curve g at x=_____ using the limit definition of slope at a point.
- b. Use a dot sticker to plot your value from q. 6a on our "slopes" graph. Copy the class graph to the right of your original graph.
- c. What do you think will be the slope of the curve g(x) at x = 53? Why do you think so?
- 6. Graph $h(x) = x^3$ below.

			30			
			20			
			10			
-6	-4	-2	0	2	4	6
-6	-4	-2		2	4	6
-6	-4	-2	-10	2	4	6
-6		-2		2	4	6
-6	4 	-2		2	4	6

Now let's plot several slope values for h(x).

- a. Find the slope of the curve h(x) at x=_____ using the limit definition of slope at a point.
- b. Use a dot sticker to plot your value from q. 7a on our "slopes" graph. Copy the class graph to the right of your original graph.
- c. What do you think will be the slope of the curve h(x) at x = 53? Why do you think so?
- 7. What is the purpose of a "slopes" graph?

Important Ideas:

Check Your Understanding!

- 1. Let $f(x) = 4x^2 5$.
 - a. Find f'(x) using the definition of the derivative.
 - b. What does each point on the graph of f'(x) represent? Be specific.
- 2. Multiple Choice: $\lim_{h \to 0} \frac{\ln(e+h)-1}{h}$ is
 - A. f'(e) where $f(x) = \ln x$
 - B. f'(e) where $f(x) = \frac{\ln x}{x}$ C. f'(1) where $f(x) = \ln x$

 - D. f(1) where $f(x) = \ln(x + e)$
 - E. f'(0) where $f(x) = \ln x$
- 3. The line that is tangent to q(x) at (-2,7) passes through (5,-1). What is q'(-2)?
- 4. Find the lines that are tangent and normal to the curve $y = x^3$ at x = 4.
- 5. The graph of f(x), shown below, consists of 4 line segments. Draw $\frac{df}{dx}$ on the coordinate grid.

