2.4 Reasoning with Properties from Algebra

- **Goals** Use properties from algebra.
 - Use properties of length and measure to justify segment and angle relationships.

ALGEBRAIC PROPERTIES OF EQUALITY

Let a, b, and c be real numbers.

Addition Property If a = b, then a + c = b + c.

If a = b, then a - c = b - c. **Subtraction Property**

Multiplication Property If a = b, then ac = bc.

Division Property If a = b and $c \neq 0$, then $a \div c = b \div c$.

Reflexive Property For any real number a, a = a.

Symmetric Property If a = b, then b = a.

Transitive Property If a = b and b = c, then a = c.

Substitution Property If a = b, then a can be substituted for b

in any equation or expression.

Example 1 Writing Reasons

Solve -2x + 1 = 56 - 3x and write a reason for each step.

$$-2x + 1 = 56 - 3x$$
 Given

$$x + 1 = 56$$

Addition property of equality

$$x = 55$$

x = 55 Subtraction property of equality

Checkpoint Solve the equation. Write a reason for each step.

1. 12x - 3(x + 7) = 8x

12x - 3(x + 7) = 8x Given

12x - 3x - 21 = 8x Distr. prop.

9x - 21 = 8x Simplify.

x - 21 = 0 Subtr. prop. of =

x = 21 Add. prop. of =

Example 2 Using Properties in Real Life

Science The Fahrenheit and Celsius temperature scales are related by the formula $F = \frac{9}{5}C + 32$, where *F* represents degrees Fahrenheit and *C* represents degrees Celsius.

- a. Solve the formula for C and write a reason for each step.
- b. Use the result to find the Celsius temperatures that correspond to the following Fahrenheit temperatures: 5°F, 32°F, 95°F, 140°F, 212°F. How does the Celsius temperature change as the Fahrenheit temperature changes?

Solution

a.
$$F=\frac{9}{5}C+32 \qquad \text{Given}$$

$$\underline{F-32}=\frac{9}{5}C \qquad \qquad \text{Subtraction property of equality}$$

$$\frac{5}{9}(F-32)=C \qquad \qquad \text{Multiplication property of equality}$$

b. Use substitution to find the Celsius temperature that corresponds to $5^{\circ}F$.

$$\frac{5}{9}(F-32)=C \qquad \text{Given}$$

$$\frac{5}{9}(\underline{5}-32)=C \qquad \text{Substitution property of equality}$$

$$\underline{-15}=C \qquad \text{Simplify.}$$

Find the other corresponding temperatures using the same method.

Temperature (°F)	5	32	95	140	212
Temperature (°C)	-15	0	35	60	100

From the table, you can see that the Celsius temperature <u>increases</u> as the Fahrenheit temperature <u>increases</u>.

PROPERTIES OF EQUALITY

Segment Length Angle Measure

Reflexive For any segment *AB*, For any angle *A*,

AB = AB. $m\angle A = m\angle A$.

Symmetric If AB = CD, then If $m\angle A = m\angle B$, then

CD = AB. $m\angle B = m\angle A$.

Transitive If AB = CD and CD = EF, If $m\angle A = m\angle B$ and then AB = EF. If $m\angle A = m\angle B$ and $m\angle B = m\angle C$, then

AB = EF. $m\angle B = m\angle C$, then $m\angle A = m\angle C$.

Example 3 Using Properties of Measure

Use the information at $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^{\circ}$

the right to find $m\angle 1$. $m\angle 2 + m\angle 3 = m\angle 4$

 $m\angle 1 = m\angle 4$

Solution

 $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^{\circ}$ Given $m\angle 2 + m\angle 3 = m\angle 4$ Given

 $m\angle 1 = \underline{m\angle 4}$ Given

 $\underline{m \angle 4} + \underline{m \angle 4} + \underline{m \angle 4} = \overline{360^{\circ}}$ Substitution property

of equality $3(m \angle 4) = 360^{\circ}$ Simplify.

 $\underline{m} \angle 4 = \underline{120^{\circ}}$ Division property

of equality

 $m\angle 1 = \underline{120^{\circ}}$ Transitive property

of equality

Checkpoint Complete the following exercise.

2. In the diagram at the right, B is the midpoint of \overline{AC} and C is the midpoint of \overline{BD} . Show that AB = CD.

 $\overline{AB} \cong \overline{BC}$ Definition of midpoint

AB = BC Definition of congruent segments

 $\overline{BC} \cong \overline{CD}$ Definition of midpoint

BC = CD Definition of congruent segments

AB = CD Transitive property of equality