Goals - Find the distance between two points.

- Find the midpoint between two points.

VOCABULARY

Midpoint The midpoint of a line segment is the point on the segment that is equidistant from its endpoints.

THE DISTANCE FORMULA

The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Example 1 Finding the Distance Between Two Points

Find the distance between $(2,4)$ and $(4,-3)$.
To find the distance, use the distance formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Write distance formula. } \\
& =\sqrt{(4-\underline{2})^{2}+(\underline{-3}-4)^{2}} & & \text { Substitute. } \\
& =\sqrt{53} & & \text { Simplify. } \\
& \approx 7.28 & & \text { Use a calculator. }
\end{aligned}
$$

(Checkpoint Find the distance between two points. Round the result to the nearest hundredth.

1. $(3,1),(-5,2)$	2. $(-4,5),(6,-2)$
8.06	12.21

Decide whether the points $(1,0),(3,-1)$, and $(4,6)$ are vertices of a right triangle.

Solution

Use the distance formula to find the lengths of the three sides.

$$
\begin{aligned}
& d_{1}=\sqrt{(3-\underline{1})^{2}+(-1-0)^{2}}=\frac{\sqrt{4+1}}{\sqrt{5}} \\
& \left.=\frac{\left.\right|^{-1}}{\left.\right|^{-1}} \right\rvert\, \\
& d_{2}=\sqrt{(4-1)^{2}+(6-\underline{0})^{2}}= \sqrt{9+36}=\underline{\sqrt{45}} \\
& d_{3}=\frac{\sqrt{(4-3)^{2}+[6-(-1)]^{2}}}{}=\underline{\sqrt{1+49}}=\sqrt{50}
\end{aligned}
$$

Next find the sum of the squares of the lengths of the two shorter sides.

$$
\begin{aligned}
d_{1}^{2}+d_{2}^{2} & =\underline{(\sqrt{5})^{2}}+\underline{(\sqrt{45})^{2}} & & \text { Substitute for } d_{\mathbf{1}} \text { and } d_{\mathbf{2}} . \\
& =\underline{5}+\underline{45} & & \text { Simplify. } \\
& =50 & & \text { Add. }
\end{aligned}
$$

The sum of the squares of the lengths of the shorter sides is 50 , which is equal to the square of the length of the longest side, $(\sqrt{50})^{2}$.

Answer The given points \qquad vertices of a right triangle.

- Checkpoint Decide whether the points are vertices of a right triangle.

3. $(1,0),(7,0),(7,5)$ yes	4. $(0,4),(2,-2),(5,-1)$ yes

THE MIDPOINT FORMULA

The midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Example 3 Finding the Midpoint Between Two Points

Find the midpoint between $(-3,-1)$ and $(2,4)$. Use a graph to check the result.

Solution

$$
\left(\frac{\boxed{-3}+2}{2}, \frac{\boxed{-1}+4}{2}\right)=\left(-\frac{\boxed{1}}{2}, \frac{\boxed{3}}{2}\right)
$$

Answer The midpoint is $\left(-\frac{1}{2}, \frac{3}{2}\right)$.
Check From the graph, you can see that the point $\left(-\frac{1}{2}, \frac{3}{2}\right)$ appears halfway between ($-3,-1$) and (2,4). You can also use the distance formula to check that the distances from the midpoint to each given point are equal.

(Checkpoint Find the midpoint between the two points.
\(\left.\begin{array}{|l|l|}\hline 5.(3,5),(-2,-3)

\left(\frac{1}{2}, 1\right) \& 6.(-7,4),(5,-10)

(-1,-3)\end{array}\right]\)\begin{tabular}{c}
$(-2,2)$

\hline | 7. $(-9,-2),(6,-2)$ |
| :--- |
| $\left(-\frac{3}{2},-2\right)$ |

\hline
\end{tabular}

