Goals - Solve linear programming problems.

- Use linear programming to solve real-life problems.

Your Notes

VOCABULARY

Optimization A process in which you find the maximum or minimum value of some variable quantity

Linear programming The process of optimizing a linear objective function subject to a system of linear inequalities called constraints

Objective function In linear programming, the linear function that is optimized

Constraints In linear programming, the linear inequalities that form a system

Feasible region In linear programming, the graph of the system of constraints

OPTIMAL SOLUTION OF A LINEAR PROGRAMMING PROBLEM

If an objective function has a maximum or a minimum value, then it must occur at a vertex of the feasible region. Moreover, the objective function will have both a maximum and a minimum value if the feasible region is bounded.

Bounded region

Unbounded region

Find the minimum value and the maximum value of
$C=2 y+3 x \quad$ Objective function
subject to the following constraints.

$$
\begin{aligned}
& x \leq 2 \\
& y \geq-1 \\
& y-x \leq 3
\end{aligned} \quad \text { Constraints }
$$

Solution

The feasible region determined by the constraints is shown. The three vertices are $(-4,-1),(2,-1)$, and $(2,5)$. To find the minimum and maximum values of C, evaluate $C=2 y+3 x$ at each of the three vertices.

At $(-4,-1): C=\underline{2(-1)+3(-4)}=-14$
At $(2,-1): C=2(-1)+3(2)=4$
At $(2,5): C=2(5)+3(2)=16$
The minimum value of C is -14 . It occurs when $x=-4$ and $y=-1$. The maximum value of C is 16 . It occurs when $x=\underline{2}$ and $y=\underline{5}$.

Checkpoint Complete the following exercise.

1. Find the minimum value and maximum value of $C=x-2 y$ subject to the following constraints.
$x \geq 1$
$y \geq x+1$
$y \leq 7-x$
minimum: -11, maximum: -3

Find the minimum value and the maximum value of

$$
C=y+2 x \quad \text { Objective function }
$$

subject to the following constraints.

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& 2 y+3 x \geq 8 \\
& 3 y+x \geq 5
\end{aligned} \quad \text { Constraints }
$$

Solution

The feasible region determined by the constraints is shown. The three vertices are (0,4), (2,1), and (5, 0). Evaluate $C=y+2 x$ at each of the vertices.

$$
\begin{aligned}
& \text { At }(0,4): C=4+2(0)=4 \\
& \text { At }(2,1): C=1+2(2)=5 \\
& \text { At }(5,0): C=0+2(5)=10
\end{aligned}
$$

If you evaluate other points in the feasible region, you will see that as the points get farther from the origin, the value of the objective function increases without bound. So, the objective function has no maximum value. The value of the objective function is always at least 4, so the minimum value is 4 .

Checkpoint Complete the following exercise.
2. Find the minimum value and the maximum value of $C=3 x+y$ subject to the following constraints.
$x \leq 4$
$x \geq 0$
$y+2 x \geq 9$
$3 y-x \geq 6$
minimum: 9, maximum: none

You are making fruit baskets with oranges, bananas, and apples. The table gives the amount of fruit required for the two arrangements. Each day you have 240 oranges, 270 bananas, and 320 apples. Arrangement A earns a profit of $\$ 10$ per basket and Arrangement B earns $\$ 8$ per basket. How many of each fruit basket should you make per day to maximize your profit?

Fruit	Arrangement A	Arrangement B
Oranges	4	6
Bananas	6	6
Apples	8	6

Solution

Write an objective function. Let a and b represent the number of each type of fruit basket made. Because you want to maximize the profit P, the objective function is: $P=10 a+8 b$.
Write the constraints in terms of a
 and b.

$\frac{4}{6} a+\underline{6 a} b \leq \underline{240}$	Oranges: up to $\underline{240}$
$\frac{8}{6} a+\underline{6} b \leq \underline{320}$	Bananas: up to $\underline{270}$
$\frac{\text { Apples: up to } \frac{320}{a}}{a \geq 0}$	Amount cannot be negative.
$b \geq 0$	Amount cannot be negative.

Calculate the profit at each vertex of the feasible region.
At $(0,40): \quad P=10(0)+8(40)=320$
At $(15,30): P=10(15)+8(30)=390$
At $(25,20): P=\underline{10(25)}+8(20)=410 \quad$ Maximum
At $(40,0): \quad P=10(40)+8(0)=400$
Maximum profit is obtained by making 25 Arrangement A baskets and 20 Arrangement B baskets.

