MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

1.

x	0	1	2	3	4	5
$f^{\prime}(x)$	-3	0	-1	5	0	-3
$f^{\prime \prime}(x)$	5.3	-2.0	1.7	-0.5	1.2	-5.1

Let f be a twice-differentiable function. Selected values of f^{\prime} and $f^{\prime \prime}$ are shown in the table above. Which of the following statements are true?
I. f has neither a relative minimum nor a relative maximum at $x=1$.
II. f has a relative maximum at $x=1$.
III. f has a relative maximum at $x=4$.
(A) I only
(B) II only
(C) III only
(D) I and III only
2. Let f be a function such that $f(-1)=1$. At each point (x, y) on the graph of f, the slope is given by $\frac{d y}{d x}=-x^{2}-x y+y^{2}-1$. Which of the following statements is true?
(A) f has a relative minimum at $x=-1$.
(B) f has a relative maximum at $x=-1$.
(C) f has neither a relative minimum nor a relative maximum at $x=-1$.
(D) There is insufficient in $\begin{aligned} & \text { or neither at } x=-1 \text {. }\end{aligned}$
3.

x	0	2	4	6	8	10
$f^{\prime}(x)$	-1	0	-2	3	0	-1
$f^{\prime \prime}(x)$	8.333	-1.900	0.971	-0.304	0.400	-4.167

Let f be a twice-differentiable function. Selected values of f^{\prime} and $f^{\prime \prime}$ are shown in the table above. Which of the following statements are true?
I. f has neither a relative minimum nor a relative maximum at $x=2$.
II. f has a relative maximum $x=2$.
III. f has a relative maximum $x=8$.
(A) I only
(B) II only
(C) III only
(D) I and III only

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

4. Let f be a twice-differentiable function. Which of the following statements are individually sufficient to conclude that $x=4$ is the location of the absolute maximum of f on the interval $[0,10]$?
I. $f^{\prime}(4)=0$
II. $x=4$ is the only critical point of f on the interval $[0,10]$, and $f^{\prime \prime}(4)<0$.
III. $x=4$ is the only critical point of f on the interval [0,10], and $f(10)<f(0)<f(4)$.
(A) II only
(B) III only
(C) I and II only
(D) II and III only
5. Let f be a function such that $f(1)=2$. At each point (x, y) on the graph of f, the slope is given by $\frac{d y}{d x}=5 x y-x^{2}-y^{2}-5$. Which of the following statements is true?
(A) f has a relative minimum at $x=1$.
(B) f has a relative maximum at $x=1$.
(C) f has neither a relative minimum nor a relative maximum at $x=1$.
(D) There is insufficient information to determine whether f has a relative minimum, a relative maximum, or neither at $x=1$.
6. Let f be a twice-differentiable function. Which of the following statements are individually sufficient to conclude that $x=2$ is the location of the absolute maximum of f on the interval $[-5,5]$?
I. $f^{\prime}(2)=0$
II. $x=2$ is the only critical point of f on the interval $[-5,5]$, and $f^{\prime \prime}(2)<0$.
III. $x=2$ is the only critical point of f on the interval $[-5,5]$, and $f(-5)<f(5)<f(2)$.
(A) II only
(B) III only
(C) I and II only
(D) II and III only

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs
7.

The graph of f^{\prime}, the derivative of the function f, is shown above. Which of the following could be the graph of f ?

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

8.

The graph of $f^{\prime \prime}$, the second derivative of the function f, is shown above on the interval $0 \leq x \leq 8$. Which of the following could be the graph of f ?

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs
9.

The graph of f^{\prime}, the derivative of the function f, is shown above. Which of the following could be the graph of f ?

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

10. The function f is differentiable and increasing on the interval $0 \leq x \leq 6$, and the graph of f has exactly two points of inflection on this interval. Which of the following could be the graph of f^{\prime}, the derivative of f ?

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

11. The function f is differentiable and decreasing on the interval $0 \leq x \leq 6$, and the graph of f has exactly two points of inflection on this interval. Which of the following could be the graph of f^{\prime}, the derivative of f ?

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

12.

Graph of $f^{\prime \prime}$

The graph of $f^{\prime \prime}$, the second derivative of the function f, is shown above on the interval $0 \leq x \leq 6$. Which of the following could be the graph of f ?

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

13. 囲 The first derivative of the function h is given by $h^{\prime}(x)=x^{4}-x^{3}+x$. On which of the following intervals is the graph of h concave down?
(A) $(-0.755,0)$
(B) $(0,0.5)$ only
(C) $(-0.455, \infty)$
(D) $(-\infty,-0.455)$

MC 5．6－5．9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

14．囲 The second derivative of the function g is given by $g^{\prime \prime}(x)=x^{5}-2.2 x^{4}-6.61 x^{3}+8.602 x^{2}$ ．At which values of x in the interval $-3<x<4$ does the graph of g have a point of inflection where the concavity of the graph changes from concave up to concave down？
（A）$x=1.1$ only
（B）$x=-2.3$ and $x=3.4$ only
（C）$x=-2.3, x=1.1$ ，and $x=3.4$ only
（D）$x=-2.3, x=0, x=1.1$ ，and $x=3.4$
15．At what values of x does the graph of $y=e^{-x}+2 x e^{-x}+x^{2} e^{-x}$ have a point of inflection？
（A）$x=-1$ only
（B）$x=-1$ and $x=1$
（C）$x=-3-\sqrt{2}$ and $x=-3+\sqrt{2}$
（D）$x=1-\sqrt{2}$ and $x=1+\sqrt{2}$

16．囲 The first derivative of the function h is given by $h^{\prime}(x)=x^{5}-3 x^{2}+x$ ．What are all intervals on which the graph of h is concave down？
（A）$(-\infty, 0)$ and $(0.338,1.307)$
（B）$(-\infty, 0.669)$
（C）$(-\infty, 0.167)$ and $(1, \infty)$
（D）$(0.167,1)$

17．At what values of x does the graph of $y=x^{2} e^{-2 x}$ have a point of inflection？
（A）$x=-2$ and $x=0$
（B）$x=0$ and $x=1$
（C）$x=-2-\sqrt{2}$ and $x=-2+\sqrt{2}$
（D）$x=1-\frac{\sqrt{2}}{2}$ and $x=1+\frac{\sqrt{2}}{2}$

18．囲 The second derivative of the function g is given by $g^{\prime \prime}(x)=0.1 x^{5}-0.29 x^{4}-0.694 x^{3}+1.9136 x^{2}$ ．At which values of x in the interval $-3<x<4$ does the graph of g have a point of inflection where the concavity of the graph changes from concave up to concave down？
（A）$x=2.3$ only
（B）$x=-2.6$ and $x=3.2$ only
（C）$x=-2.6, x=2.3$ ，and $x=3.2$ only
（D）$x=-2.6, x=0, x=2.3$ ，and $x=3.2$

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

19.

x	$0<x<5$	$x=5$	$5<x<8$	$x=8$	$8<x<12$	$x=12$	$12<x<16$
$f^{\prime}(x)$	Positive	Undefined	Negative	-2	Negative	0	Positive
$f^{\prime \prime}(x)$	Positive	Undefined	Negative	0	Positive	0	Positive

The function f is continuous on the interval $(0,16)$, and f is twice differentiable except at $x=5$ where the derivatives are undefined. Information about the first and second derivatives of f for values of x in the interval $(0,16)$ is given in the table above. At what values of x in the interval $(0,16)$ does the graph of f have a point of inflection?
(A) $x=8$ only
(B) $x=5$ and $x=8$
(C) $x=5$ and $x=12$
(D) $x=8$ and $x=12$
20. Let f be the function defined by $f(x)=\frac{1}{3} x^{3}-3 x^{2}-16 x$. On which of the following intervals is the graph of f both decreasing and concave down?
(A) $(-\infty, 3)$
(B) $(-2,3)$ only
(C) $(3,8)$
(D) $(8, \infty)$
21. Let f be the function defined by $f(x)=\frac{1}{3} x^{3}-4 x^{2}-9 x+5$. On which of the following intervals is the graph of f both decreasing and concave down?
(A) $(-\infty, 4)$
(B) $(-1,4)$
(C) $(4,9)$
(D) $(9, \infty)$
22. 囲 The first derivative of the function h is given by $h^{\prime}(x)=3 \ln (2+\cos (2 x))-x$, and the second derivative of h is given by $h^{\prime \prime}(x)=\frac{-6 \sin (2 x)}{2+\cos (2 x)}-1$. On what open intervals contained in $-2<x<2$ is the graph of h both increasing and concave down?
(A) $(-2,-1.486)$ and $(-0.250,1.085)$
(B) $(-2,-1.486)$ and $(-0.250,1.656)$
(C) $(-2,1.085)$
(D) $(-1.047,-0.250)$

MC 5.6-5.9 Connections among $f, f^{\prime}, f^{\prime \prime}$ and graphs

23. 囲 The first derivative of the function h is given by $h^{\prime}(x)=\sin x+\cos \left(x^{2}\right)+x$, and the second derivative of h is given by $h^{\prime \prime}(x)=\cos x-2 x \sin \left(x^{2}\right)+1$. On what open intervals contained in $-3<x<2$ is the graph of h both increasing and concave down?
(A) $(0.969,1.697)$ only
(B) $(-2.499,-1.829)$ and $(0.969,1.697)$
(C) $(-0.495,2)$
(D) $(-1.311,-0.166)$
24.

x	$0<x<3$	$x=3$	$3<x<9$	$x=9$	$9<x<11$	$x=11$	$11<x<16$
$f^{\prime}(x)$	Positive	Undefined	Negative	-3	Negative	0	Positive
$f^{\prime \prime}(x)$	Positive	Undefined	Negative	0	Positive	0	Positive

The function f is continuous on the interval $(0,16)$, and f is twice differentiable except at $x=3$, where the derivatives are undefined. Information about the first and second derivatives of f for values of x in the interval $(0,16)$ is given in the table above. At what values of x in the interval $(0,16)$ does the graph of f have a point of inflection?
(A) $x=9$ only
(B) $x=3$ and $x=9$
(C) $\quad x=3$ and $x=11$
(D) $x=9$ and $x=11$

