## Unit 1 Progress Check: MCQ Part A

1. 囬 The function $f$ is given by $f(x)=0.2 x^{4}-1.0 x^{3}-6.6 x^{2}+15.4 x-1.99$. For how many positive values of $b$ does $\lim _{x \rightarrow b} f(x)=6$ ?
(A) One
(B) Two
(C) Three
(D) Four
2. 



A particle is moving on the $x$-axis and the position of the particle at time $t$ is given by $x(t)$, whose graph is given above. Which of the following is the best estimate for the speed of the particle at time $t=4$ ?
(A) 0
(B) 5
(C) $\frac{20}{3}$
(D) 20

## Unit 1 Progress Check: MCQ Part A

3. 

| $t$ (seconds) | 0 | 20 | 40 | 60 | 80 | 100 | 120 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y(t)$ (feet) | 0 | 105 | 300 | 900 | 2400 | 5000 | 10,000 |

A model rocket leaves the ground at time $t=0$ and travels straight up from the ground. The height, in feet, of the rocket above the ground is given by $y(t)$, where $t$ is measured in seconds for $0 \leq t \leq 120$. Values of $y(t)$ for selected values of $t$ are given in the table above. Of the following values of $t$, at which value would the velocity of the rocket most likely be greatest based on the data in the table?
(A) $t=20$
(B) $t=40$
(C) $t=60$
(D) $t=80$
4. The position of a particle moving to the right on the $x$-axis is given by $x(t)$, where $x(t)$ is measured in centimeters and $t$ is measured in seconds for $0 \leq t \leq 50$. If $y=x(t)$ is a linear function, which of the following would most likely give the best estimate of the speed of the particle, in centimeters per second, at time $t=10$ seconds?
(A) $x(10)$
(B) $\frac{x(10)}{10}$
(C) $x(11)-x(9)$
(D) The slope of the graph of $y=x(t)$
5. Let $f$ be the function given by $f(x)=\frac{e^{3 x}-1}{x}$ for $x \neq 0$. Which of the following equations expresses the property that $f(x)$ can be made arbitrarily close to 3 by taking $x$ sufficiently close to 0 , but not equal to 0 ?
(A) $f(0)=3$
(B) $f\left(\lim _{x \rightarrow 0} x\right)=3$
(C) $\lim _{x \rightarrow 0} f(x)=3$
(D) $\lim _{x \rightarrow 3} f(x)=0$
6. The function $f$ has the property that as $x$ gets closer and closer to 3 , the values of $f(x)$ get closer and closer to 5 . Which of the following statements must be true?
(A) $f(3)=5$
(B) $f(5)=3$
(C) $\lim _{x \rightarrow 3} f(x)=5$
(D) $\lim _{x \rightarrow 5} f(x)=3$
7. A function $f$ satisfies $\lim _{x \rightarrow 3} f(x)=6$. Which of the following could be the graph of $f$ ?

## Unit 1 Progress Check: MCQ Part A

(A)

(B)

(C)

(D)


## Unit 1 Progress Check: MCQ Part A

8. 



The graph of the function $f$ is shown above. Which of the following expressions equals 2 ?
(A) $f(6)$
(B) $\lim _{x \rightarrow 6^{-}} f(x)$
(C) $\lim _{x \rightarrow 6^{+}} f(x)$
(D) $\lim _{x \rightarrow 6} f(x)$

## Unit 1 Progress Check: MCQ Part A

9. 



The graph of the function $f$ is shown above. The value of $\lim _{x \rightarrow 4} f(x)$ is
(A) 2
(B) $\frac{5}{2}$
(C) 3
(D) nonexistent
10.

| $x$ | 3.9 | 3.99 | 3.999 | 4.001 | 4.01 | 4.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 7.018 | 7.007 | 7.002 | 6.998 | 5.982 | 5.887 |

The table above gives selected values for a continuous function $f$. Based on the data in the table, which of the following is the best approximation for $\lim _{x \rightarrow 4} f(x)$ ?
(A) 0
(B) 4
(C) 7
(D) There is no best approximation, because the limit does not exist.

## Unit 1 Progress Check: MCQ Part A

11. 

| $x$ | 4.9 | 4.99 | 4.999 | 4.9999 | 5.0001 | 5.001 | 5.01 | 5.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 4 | -16 | -256 | -726 | 7.9999 | 7.999 | 7.99 | 7.9 |

The table above gives values of a function $f$ at selected values of $x$. Which of the following conclusions is supported by the data in the table?
(A) $\lim _{x \rightarrow 5} f(x)=8$
(B) $\lim _{x \rightarrow 5^{-}} f(x)=8$
(C) $\lim _{x \rightarrow 5^{+}} f(x)=8$
(D) $\lim _{x \rightarrow 8^{+}} f(x)=5$
12.

| $x$ | 1.9 | 1.99 | 1.999 | 1.9999 | 2 | 2.0001 | 2.001 | 2.01 | 2.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 7.80 | 7.86 | 7.90 | 7.95 | 3 | 8.05 | 8.10 | 8.14 | 8.20 |

The table above gives values of the function $f$ at selected values of $x$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 2} f(x)=3$
(B) $\lim _{x \rightarrow 2} f(x)=8$
(C) $\lim _{x \rightarrow 2} f(x)$ does not exist.
(D) $\lim _{x \rightarrow 2} f(x)$ cannot be definitively determined from the data in the table.
13. $f(x)= \begin{cases}2 x+2 & \text { for } x<1 \\ x^{2}+4 & \text { for } x>1\end{cases}$

If $f$ is the function defined above, then $\lim _{x \rightarrow 1^{-}} f(x)$ is
(A) 2
(B) 4
(C) 5
(D) nonexistent

## Unit 1 Progress Check: MCQ Part A

14. 



Graph of $f$


Graph of $g$

The graphs of the functions $f$ and $g$ are shown above. The value of $\lim _{x \rightarrow 4} \frac{f(x)+6}{g(x)}$ is
(A) $\frac{3}{5}$
(B) $\frac{7}{5}$
(C) $\frac{9}{5}$
(D) nonexistent
15. $\lim _{x \rightarrow 0} \frac{\cos x+4 e^{x}}{5 e^{x}}$ is
(A) $\frac{1}{5}$
(B) $\frac{4}{5}$
(C) 1
(D) nonexistent
16. If $f$ is the function defined by $f(x)=\frac{x-4}{\sqrt{x}-2}$, then $\lim _{x \rightarrow 4} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow 4}(\sqrt{x}-2)$
(B) $\lim _{x \rightarrow 4}(\sqrt{x}+2)$
(C) $\lim _{x \rightarrow 4}\left(\frac{x^{2}-16}{x-4}\right)$
(D) $\frac{\lim _{x \rightarrow 4}(x-4)}{\lim _{x \rightarrow 4}(\sqrt{x}-2)}$
17. $\lim _{x \rightarrow 0} \frac{5 x^{5}+3 x^{2}+18 x}{3 x^{5}+6 x}$ is

## Unit 1 Progress Check: MCQ Part A

(A) 0
(B) $\frac{5}{3}$
(C) 3
(D) $\infty$
18. If $f(x)=\frac{\cos x-1}{\sin ^{2} x}$, then $\lim _{x \rightarrow 0} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow 0} \frac{-1}{1+\cos x}$
(B) $\lim _{x \rightarrow 0} \frac{\cos x-1}{1+\cos ^{2} x}$
(C) $\lim _{x \rightarrow 0} \csc x$
(D) $\lim _{x \rightarrow 0}(\cot x-\csc x)$

