Unit 1 Progress Check: MCQ Part B

1. If f is the function defined by $f(x)=\frac{x-1}{1-\frac{1}{x}}$, then $\lim _{x \rightarrow 1} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow 1} x$
(B) $\lim _{x \rightarrow 1} 2 x$
(C) $\lim _{x \rightarrow 1}\left(\frac{x-1}{1-x}\right)$
(D) $\frac{\lim _{x \rightarrow 1}(x-1)}{\lim _{x \rightarrow 1}\left(1-\frac{1}{x}\right)}$
2. Let f and g be functions such that $\lim _{x \rightarrow 4} g(x)=7$ and $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}=\pi$. What is $\lim _{x \rightarrow 4} f(x)$?
(A) $\frac{\pi}{7}$
(B) $7+\pi$
(C) 7π
(D) The limit cannot be determined from the information given.
3. $f(x)= \begin{cases}\frac{|x|}{x} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}$

If f is the function defined above, then $\lim _{x \rightarrow 0} f(x)$ is
(A) -1
(B) 0
(C) 1
(D) nonexistent
4. The function f is defined for all x in the interval $3<x<6$. Which of the following statements, if true, implies that $\lim _{x \rightarrow 5} f(x)=12$?
(A) There exists a function g with $f(x) \leq g(x)$ for $3<x<6$, and $\lim _{x \rightarrow 5} g(x)=12$.
(B) There exists a function g with $g(x) \leq f(x)$ for $3<x<6$, and $\lim _{x \rightarrow 5} g(x)=12$. There exist functions g and h with $g(x) \leq f(x) \leq h(x)$ for $3<x<6$, and $\lim _{x \rightarrow 5} g(x)=11$ and
(C) $\lim _{x \rightarrow 5} h(x)=13$.
(D) There exist functions g and h with $g(x) \leq f(x) \leq h(x)$ for $3<x<6$, and
(D) $\lim _{x \rightarrow 5} g(x)=\lim _{x \rightarrow 5} h(x)=12$.

Unit 1 Progress Check: MCQ Part B

5. The function g is given by $g(x)=\frac{1}{x^{2}-4 x+5}$. The function h is given by $h(x)=\frac{2 x^{2}-8 x+10}{x^{2}-4 x+6}$. If f is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for $0<x<5$, what is $\lim _{x \rightarrow 2} f(x)$?
(A) 0
(B) 1
(C) 2
(D) The limit cannot be determined from the information given.
6. Let f be a function of x. The value of $\lim _{x \rightarrow a} f(x)$ can be found using the squeeze theorem with the functions g and h . Which of the following could be graphs of f, g, and h ?
(A)

(B)

(C)

(D)

Unit 1 Progress Check: MCQ Part B

7.

x	2.9	2.95	2.99	2.999	3.001	3.01	3.05	3.1
$f(x)$	3.4	3.1	3.004	3.00004	3.00004	3.004	3.1	3.4

The table above gives selected values for a function f. Based on the data in the table, which of the following could not be the graph of f on the interval $2.9 \leq x \leq 3.1$?
(A)

(B)

(C)

(D)

Unit 1 Progress Check: MCQ Part B

8. $f(x)=\left\{\begin{array}{cc}-x^{2}+3 x+3 & \text { for } x<2 \\ 6 & \text { for } x=2 \\ 6-\frac{1}{2} x & \text { for } x>2\end{array}\right.$

Let f be the piecewise function defined above. Also shown is a portion of the graph of f. What is the value of $\lim _{x \rightarrow 2} f(f(x))$?
(A) -15
(B) -7
(C) 3
(D) $\frac{7}{2}$

Unit 1 Progress Check: MCQ Part B

9.

x	2.9	2.95	2.99	2.998	3.002	3.01	3.05	3.1
$f(x)$	1.650	1.625	1.605	1.601	1.602	1.612	1.659	1.716

The table above gives selected values for a function f. Also shown is a portion of the graph of f. The graph consists of a line segment for $x<3$ and part of a parabola for $x>3$. What is $\lim _{x \rightarrow 3} f(x)$?
(A) 1.6
(B) $\frac{1.601+1.602}{2}$
(C) 2
(D) The limit does not exist.
10. $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-5 x-3}{x-3} & \text { if } x \neq 3 \\ 9 & \text { if } x=3\end{array}\right.$

The function f is defined above. Which of the following statements is true?

Unit 1 Progress Check: MCQ Part B

(A) f is continuous at $x=3$.
(B) f has a removable discontinuity at $x=3$.
(C) f has a jump discontinuity at $x=3$.
(D) f has a discontinuity due to a vertical asymptote at $x=3$.
11. The function f has a removable discontinuity at $x=3$. Which of the following could be the graph of f ?

(B)

(C)

(D)

Unit 1 Progress Check: MCQ Part B

12.

Graph of f

The graph of a function f is shown in the figure above. At what value of x does f have a jump discontinuity?
(A) $x=1$
(B) $x=3$
(C) $x=4$
(D) $x=5$
13. If $\lim _{x \rightarrow 6} f(x)$ exists with $\lim _{x \rightarrow 6} f(x)<8$ and $f(6)=12$, which of the following statements must be false?
(A) $\lim _{x \rightarrow 6^{-}} f(x)=0$
(B) $\lim _{x \rightarrow 6^{+}} f(x)<8$
(C) $\lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{+}} f(x)$
(D) f is continuous at $x=6$.

Unit 1 Progress Check: MCQ Part B

14. $f(x)= \begin{cases}3^{x} & \text { for } 0<x<1 \\ \frac{1}{2} x^{2}-x+\frac{7}{2} & \text { for } 1<x<2\end{cases}$

Let f be the function defined above. Which of the following statements is true?
(A) f is continuous at $x=1$.
(B) f is not continuous at $x=1$ because $f(1)$ does not exist.
(C) f is not continuous at $x=1$ because $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$.
(D) f is not continuous at $x=1$ because $\lim _{x \rightarrow 1} f(x)$ does not exist.
15. Which of the following functions is continuous at $x=3$?
(A) $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-6}{x-3} & \text { for } x \neq 3 \\ 8 & \text { for } x=3\end{array}\right.$
(B) $g(x)=\left\{\begin{array}{cc}5 & \text { for } x<3 \\ 3 x-4 & \text { for } x>3\end{array}\right.$
(C) $\quad h(x)=\left\{\begin{array}{cc}\sin \left(\frac{\pi}{2} x\right) & \text { for } x<3 \\ -1 & \text { for } x=3 \\ \cos (\pi x) & \text { for } x>3\end{array}\right.$
(D) $k(x)=\left\{\begin{array}{cc}5+\ln (4-x) & \text { for } x \leq 3 \\ 5 \ln (x-2) & \text { for } x>3\end{array}\right.$

