Unit 1 Progress Check: MCQ Part c

1. 囬 Let f be the function given by $f(x)=\frac{\left|x^{2}-2\right|(x+0.4)}{\left(x^{2}-2\right)(x+0.4)}$. On which of the following open intervals is f continuous?
(A) $(-2,-1)$
(B) $(-1,0)$
(C) $(0,1)$
(D) $(1,2)$
2. 䧃 $f(x)= \begin{cases}e^{b x} & \text { for } x \leq 3 \\ \frac{2}{3} x+b & \text { for } x>3\end{cases}$

Let f be the function defined above. For what values of b is f continuous at $x=3$?
(A) 0.394 only
(B) 0.274 only
(C) -4.500 and 0.394
(D) -1.998 and 0.274
3. Let f be the function given by $f(x)=2 x+\tan \left(\frac{x}{5}\right)-15$. The Intermediate Value Theorem applied to f on the closed interval $[10,15]$ guarantees a solution in $[10,15]$ to which of the following equations?
(A) $f(x)=-15$
(B) $f(x)=0$
(C) $f(x)=5$
(D) $f(x)=15$

Unit 1 Progress Check: MCQ Part c

4.

Graph of f
The graph of the function f is shown above. On which of the following intervals is f continuous?
(A) $(0,1)$
(B) $(1,2)$
(C) $(2,3)$
(D) $(3,4)$
5. The function f is continuous on the interval $-2<x<5$ and is not continuous on the interval $-2 \leq x \leq 5$. Which of the following could not be an expression for $f(x)$?
(A) $\frac{x+2}{x-5}$
(B) $\frac{x-5}{x+2}$
(C) $(x+2)(x-5)$
(D) $\frac{1}{(x+2)(x-5)}$
6. $\quad g(x)= \begin{cases}\frac{x^{2}-4}{4 x+8} & \text { for } x \neq-2 \\ k & \text { for } x=-2\end{cases}$

Let g be the function defined above, where k is a constant. For what value of k is g continuous at $x=-2$?

Unit 1 Progress Check: MCQ Part c

(A) -2
(B) -1
(C) $-\frac{1}{2}$
(D) 0
7. $f(x)= \begin{cases}2 c+c \sin \left(\frac{\pi}{2} x\right) & \text { for } x<3 \\ 7 & \text { for } x=3 \\ 2 c+5 x & \text { for } x>3\end{cases}$

Let f be the function defined above. For what value of c, if any, is f continuous at $x=3$?
(A) -4
(B) 7
(C) -15
(D) There is no such c.
8. The function h is defined by $h(x)=\frac{x^{2}-9}{x-4}$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 4^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow 4^{+}} h(x)=-\infty$
(B) $\lim _{x \rightarrow 4^{-}} h(x)=+\infty$ and $\lim _{x \rightarrow 4^{+}} h(x)=-\infty$
(C) $\lim _{x \rightarrow 4^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow 4^{+}} h(x)=+\infty$
(D) $\lim _{x \rightarrow 4^{-}} h(x)=+\infty$ and $\lim _{x \rightarrow 4^{+}} h(x)=+\infty$
9. Let f be a function such that $\lim _{x \rightarrow 3^{-}} f(x)=\infty$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 3^{+}} f(x)=\infty$
(B) f is undefined at $x=3$.
(C) The graph of f has a vertical asymptote at $x=3$.
(D) The graph of f has a vertical asymptote at $x=-3$.
10. Let f be a function of x. If $\lim _{x \rightarrow 2^{-}} f(x)=+\infty$ and $\lim _{x \rightarrow 2^{+}} f(x)=+\infty$, which of the following could be a graph of f ?

Unit 1 Progress Check: MCQ Part c

(A)

(B)

(C)

(D)

11. Let f be the function defined by $f(x)=\frac{3 x+5}{x+2}$. Which of the following statements are true?
I. The graph of f has a horizontal asymptote at $y=3$ because $\lim _{x \rightarrow \infty} f(x)=3$.
II. The graph of f has a horizontal asymptote at $y=3$ because $\lim _{x \rightarrow-\infty} f(x)=3$.
III. The graph of f has a vertical asymptote at $x=-2$ because $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$.
(A) I only
(B) III only
(C) I and II only
(D) I, II, and III

Unit 1 Progress Check: MCQ Part c

12. The population on an island is modeled by $P(t)=\frac{5000}{20+30 e^{-0.03 t}}$ for $t \geq 0$, where $P(t)$ is the number of people on the island after t years. What is $\lim _{t \rightarrow \infty} P(t)$?
(A) 100
(B) $\frac{500}{3}$
(C) 250
(D) 5000
13. Let f be the function defined by $f(x)=\frac{5 x^{20}}{8 e^{x}+9 x^{20}}$ for $x>0$. Which of the following is a horizontal asymptote to the graph of f ?
(A) $y=0$
(B) $y=\frac{5}{9}$
(C) $y=\frac{5}{8}$
(D) There is no horizontal asymptote to the graph of f.
14. Let f be a function such that $f(3)<4<f(5)$. Which of the following statements provides sufficient additional information to conclude that there is a value $x=c$ in the interval $[3,5]$ such that $f(c)=4$?
(A) f is defined for all x.
(B) f is increasing for all x.
(C) f is continuous for all x.
(D) There is a value $x=c$ in the interval $[3,5]$ such that $\lim _{x \rightarrow c} f(x)=4$.
15. Let f be a function of x. Which of the following statements, if true, would guarantee that there is a number c in the interval $[-5,4]$ such that $f(c)=12$?
(A) f is increasing on the interval $[-5,4]$, where $f(-5)=0$ and $f(4)=20$.
(B) f is increasing on the interval $[-5,4]$, where $f(-5)=15$ and $f(4)=30$.
(C) f is continuous on the interval $[-5,4]$, where $f(-5)=0$ and $f(4)=20$.
(D) f is continuous on the interval $[-5,4]$, where $f(-5)=15$ and $f(4)=30$.
