## Unit 2 Progress Check: MCQ Part B

1. 囲 Let $g$ be the function given by $g(x)=x^{4}-2 x^{3}-3 x$. What are all values of $x$ such that $g^{\prime}(x)=\frac{1}{2}$ ?
(A) -4.00
(B) 1.746
(C) 1.777
(D) -0.164 and 2.508
2. Let $f$ be the function given by $f(x)=2 x^{3}+x^{2}-3$. What is the value of $f^{\prime}(2)$ ?
(A) 56
(B) 28
(C) 25
(D) 10
3. If $f(x)=5 x^{6}-3 x^{5}+2 x^{3}-x^{2}+e^{3}$, then $f^{\prime}(x)=$
(A) $5 x^{5}-3 x^{4}+2 x^{2}-x$
(B) $30 x^{5}-15 x^{4}+6 x^{2}-2 x$
(C) $30 x^{5}-15 x^{4}+6 x^{2}-2 x+3 e^{2}$
(D) $30 x^{6}-15 x^{5}+6 x^{3}-2 x^{2}$
4. If $g(x)=3 \sin x+2 \cos x+5$, then $g^{\prime}\left(\frac{\pi}{3}\right)=$
(A) $\frac{3}{2}-\sqrt{3}$
(B) $-\frac{3}{2}+\sqrt{3}$
(C) $\frac{3}{2}+\sqrt{3}$
(D) $6+\frac{3}{2} \sqrt{3}$
5. Let $g$ be the function given by $g(x)=\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}$. What is the instantaneous rate of change of $g$ with respect to $x$ at $x=\frac{\pi}{3}$ ?
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) $-\frac{\sqrt{3}}{2}$
6. $\lim _{h \rightarrow 0} \frac{7 e^{x}-7 e^{x+h}}{4 h}=$

## Unit 2 Progress Check: MCQ Part B

(A) $-7 e^{x}$
(B) $7 e^{x}$
(C) $-\frac{7}{4} e^{x}$
(D) $\frac{7}{4} e^{x}$
7. The function $f$ is given by $f(x)=\left(2 x^{3}+b x\right) g(x)$, where $b$ is a constant and $g$ is a differentiable function satisfying $g(2)=4$ and $g^{\prime}(2)=-1$. For what value of $b$ is $f^{\prime}(2)=0$ ?
(A) -8
(B) $-\frac{56}{3}$
(C) -24
(D) -40
8.

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $g(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 2 | 1 | 5 | 2 | 4 |

The table above gives the values of the differentiable functions $f$ and $g$ and their derivatives at $x=2$. What is the value of $\frac{a l}{d x}(f(x) g(x))$ at $x=2$ ?
(A) 6
(B) 13
(C) 14
(D) 20
9. If $f(x)=\frac{1}{x} \cdot \cos x$, then $f^{\prime}(x)=$
(A) $\frac{\sin x}{x^{2}}$
(B) $\frac{-1-x^{2} \sin x}{x^{2}}$
(C) $\frac{-\cos x-x \sin x}{x^{2}}$
(D) $\frac{-\cos x+x \sin x}{x^{2}}$
10. If $f(x)=\frac{3 x^{2}-2}{4 x+1}$, then $f^{\prime}(-1)=$
(A) $-\frac{14}{3}$
(B) $-\frac{3}{2}$
(C) $\frac{14}{9}$
(D) $\frac{22}{9}$

## Unit 2 Progress Check: MCQ Part B

11. 



The graphs of the functions $f$ and $g$ are shown above. If $h(x)=\frac{f(x)+1}{g(x)+3 x}$, then $h^{\prime}(2)=$
(A) $\frac{1}{2}$
(B) $\frac{9}{100}$
(C) $\frac{1}{100}$
(D) $\frac{1}{10}$
12. What is the slope of the line tangent to the graph of $y=\frac{4 x^{3}}{x+3}$ at $x=1$ ?
(A) 1
(B) $\frac{11}{4}$
(C) $\frac{13}{4}$
(D) 12
13. $\frac{d}{d x}(\cot x)=$
(A) $-\tan x$
(B) $\sec ^{2} x$
(C) $\tan x$
(D) $-\csc ^{2} x$
14. $\frac{d}{d x}(\sin x \cdot \csc x)=$

## Unit 2 Progress Check: MCQ Part B

(A) 0
(B) 1
(C) $-\cot ^{2} x$
(D) $2 \cot x$
15. Below is an attempt to derive the derivative of $\csc x$ using the product rule, where $x$ is in the domain of $\csc x$. In which step, if any, does an error first appear?

Step 1: $\csc x \cdot \sin x=1$
Step 2: $\frac{d l}{d x}(\csc x \cdot \sin x)=0$
Step 3: $\frac{d l}{d x}(\csc x) \cdot \sin x+\csc x \cdot \cos x=0$
Step 4: $\frac{d l}{d x}(\csc x)=\frac{-\csc x \cdot \cos x}{\sin x}=-\csc x \cdot \cot x$
(A) Step 1
(B) Step 2
(C) Step 3
(D) There is no error.

