- 1. If $g(x) = 2 \ln (x + 1)$ and f is a differentiable function of x, which of the following is equivalent to the derivative of f(g(x)) with respect to x?
 - (A) $f'(\frac{2}{x+1})$ (B) $\frac{2f'(x)}{x+1}$ (C) $f'(2\ln(x+1))$
 - (D) $\frac{2f'(2\ln(x+1))}{x+1}$
- 2. For which of the following functions is the chain rule an appropriate method to find the derivative with respect to x?

I.
$$y = \cos\left(\sqrt{x} + 1\right)$$

II. $y = 2^x \sin x$
III. $y = \frac{20}{40x^2 - 1}$

- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- 3. Let f be a differentiable function. If $h(x) = (2 + f(\sin x))^3$, which of the following gives a correct process for finding h'(x)?

(A)
$$h'(x) = 3(2 + f(\sin x))^2$$

(B) $h'(x) = 3(2 + f(\sin x))^2 \cdot f'(\sin x)$
(C) $h'(x) = 3(2 + f(\sin x))^2 \cdot f'(\cos x)$
(D) $h'(x) = 3(2 + f(\sin x))^2 \cdot f'(\sin x) \cdot \cos x$

4. What is the slope of the line tangent to the curve $4y^2 + xy - 2x^2 = 3$ at the point (-1, -1)?

- (A) -5
- (B) $-\frac{3}{7}$
- (C) $\frac{1}{4}$
- (D) $\frac{1}{3}$
- 5. If $\cos(4x y) = x + y$, then $\frac{dy}{dx} =$

(A)
$$-1 - \sin(4x - y)$$

(B) $\frac{2+4\sin(4x-y)}{\sin(4x-y)}$
(C) $-\frac{1}{1+\sin(4x-y)}$
(D) $\frac{1+4\sin(4x-y)}{-1+\sin(4x-y)}$

The point (1,3) lies on the curve in the *xy*-plane given by the equation f(x)g(y) = 24 + x + y, where *f* is a differentiable function of *x* and *g* is a differentiable function of *y*. Selected values of *f*, *f'*, *g*, and *g'* are given in the table above. What is the value of $\frac{dy}{dx}$ at the point (1,3)?

$$\begin{array}{ccc}
(A) & -11 \\
(B) & 4 \\
\hline
(C) & 5 \\
\hline
(D) & 13 \\
\end{array}$$

The graph of the increasing differentiable function f is shown above. Also shown is the line tangent to the graph of f at the point (2, 4). Let g be the inverse of f. Which of the following statements about g' is true?

9

Unit 3 Progress Check: MCQ

- (A) $g'(2) = \frac{2}{3}$ (B) $g'(2) = \frac{3}{2}$ (C) $g'(4) = \frac{2}{3}$ (D) $g'(4) = \frac{3}{2}$
- 8. Let f be the decreasing function defined by $f(x) = -x^3 6x^2 12x + 8$, where f(4) = -8. If g is the inverse function of f, which of the following is a correct expression for g'(-8)?
 - (A) $g'(-8) = \frac{1}{f'(-8)}$ (B) $g'(-8) = \frac{1}{f'(4)}$ (C) g'(-8) = f'(4)(D) g'(-8) = f'(-8)

•	x	-4	0	3
	f(x)	0	3	5
	f'(x)	1	2	4

The table above gives selected values for a differentiable and increasing function f and its derivative. If $g(x) = f^{-1}(x)$ for all x, which of the following is a correct expression for g'(0)?

(A)
$$g'(0) = f'(0) = 2$$

(B) $g'(0) = \frac{1}{f'(0)} = \frac{1}{2}$
(C) $g'(0) = \frac{1}{f'(-4)} = 1$

(D)
$$g'(0) = -\frac{f'(0)}{(f(0))^2} = -\frac{2}{9}$$

10.
$$\frac{d}{dx} \left(\sin^{-1} \left(x^2 \right) \right) \Big|_{x=\frac{1}{4}} =$$
(A) $\frac{2\left(\frac{1}{4}\right)}{1+\left(\frac{1}{4}\right)^4}$
(B) $\frac{2\left(\frac{1}{4}\right)}{\sqrt{1-\left(\frac{1}{4}\right)^4}}$
(C) $2\left(\frac{1}{4}\right)\cos^{-1}\left(\frac{1}{16}\right)$
(D) $-2\left(\frac{1}{4}\right)\cot\left(\frac{1}{16}\right)\csc\left(\frac{1}{16}\right)$

11.
$$\frac{d}{dx} \left(\cos^{-1}(-3x) \right) =$$

(A)
$$\frac{3}{\sqrt{1-(-3x)^2}}$$

(B) $\frac{-3}{\sqrt{1-(-3x)^2}}$

(C)
$$-\sin^{-1}(-3x) \cdot (-3)$$

(D)
$$-\cos^{-2}(-3x) \cdot (-3)$$

12. Which of the following methods can be used to find the derivative of $y = \arccos(\sqrt{x})$ with respect to x?

- I. Use the quotient rule to differentiate $\frac{1}{\cos(\sqrt{x})}$.
- II. Use the chain rule to differentiate $\cos(\arccos(\sqrt{x})) = \sqrt{x}$.
- III. Use implicit differentiation to differentiate the function y in the relation $\cos y = \sqrt{x}$ with respect to x.
- (A) I only
- (B) III only
- (C) II and III only
- (D) I, II, and III
- 13. Which of the following expressions can be differentiated using the product rule?
 - (A) $\arcsin(\cos x)$
 - (B) $\sin x (\arccos x)$
 - (C) $e^x + \arctan x$
 - (D) $(12x^2 + 3x 6)^e$
- 14. Which of the following requires the use of implicit differentiation to find $\frac{dy}{dx}$?
 - (A) $2y + 3x^2 x = 5$ (B) $y = e^{3+x} + x^3$ (C) $y = e^{y+x} + x^3$ (D) $y = \frac{x^4+3}{4x^3-2}$
- **15.** For which of the following functions would the quotient rule be considered the best method for finding the derivative?

(A)
$$y = (x^3 + x)^{-2}$$

(B) $y = \frac{x^3 + x}{x}$
(C) $y = \cos^{-1}(x^3 + x)$
(D) $y = \frac{\cos(x^3 + x)}{x^3 + x}$

16. If
$$y = 3e^{-2x}$$
, then $\frac{d^3y}{dx^3} =$

(A)	$-24e^{-2x}$	\checkmark
(B)	$-6e^{-2x}$	
(C)	$48e^{-2x}$	
(D)	$-216e^{-6x}$	

17.

The figure above shows the graph of f', the derivative of the function f. At which of the four indicated values of x is f''(x) least?

(B)	В	
(C)	C	
(D)	D	

18. Let y = f(x) be a twice-differentiable function such that f(-1) = 5 and $\frac{dy}{dx} = \frac{1}{5}(xy^2 + 4y)^2$. What is the value of $\frac{d^2y}{dx^2}$ at x = -1?

(A) -190	
(B) -70	
(C) -2	
(D) 10	\checkmark