Unit 3 Progress Check: MCQ

1. If $g(x)=2 \ln (x+1)$ and f is a differentiable function of x, which of the following is equivalent to the derivative of $f(g(x))$ with respect to x ?
(A) $f^{\prime}\left(\frac{2}{x+1}\right)$
(B) $\frac{2 f^{\prime}(x)}{x+1}$
(C) $f^{\prime}(2 \ln (x+1))$
(D) $\frac{2 f^{\prime}(2 \ln (x+1))}{x+1}$
2. For which of the following functions is the chain rule an appropriate method to find the derivative with respect to x ?
I. $y=\cos (\sqrt{x}+1)$
II. $y=2^{x} \sin x$
III. $y=\frac{20}{40 x^{2}-1}$
(A) I only
(B) II only
(C) III only
(D) I and III only
3. Let f be a differentiable function. If $h(x)=(2+f(\sin x))^{3}$, which of the following gives a correct process for finding $h^{\prime}(x)$?
(A) $h^{\prime}(x)=3(2+f(\sin x))^{2}$
(B) $h^{\prime}(x)=3(2+f(\sin x))^{2} \cdot f^{\prime}(\sin x)$
(C) $h^{\prime}(x)=3(2+f(\sin x))^{2} \cdot f^{\prime}(\cos x)$
(D) $h^{\prime}(x)=3(2+f(\sin x))^{2} \cdot f^{\prime}(\sin x) \cdot \cos x$
4. What is the slope of the line tangent to the curve $4 y^{2}+x y-2 x^{2}=3$ at the point $(-1,-1)$?
(A) -5
(B) $-\frac{3}{7}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$
5. If $\cos (4 x-y)=x+y$, then $\frac{d y}{d x}=$

Unit 3 Progress Check: MCQ

(A) $-1-\sin (4 x-y)$
(B) $\frac{2+4 \sin (4 x-y)}{\sin (4 x-y)}$
(C) $-\frac{1}{1+\sin (4 x-y)}$
(D) $\frac{1+4 \sin (4 x-y)}{-1+\sin (4 x-y)}$
6.

$$
\begin{array}{l|l|l|l}
f(1)=4 & f^{\prime}(1)=-2 & g(3)=7 & g^{\prime}(3)=1
\end{array}
$$

The point $(1,3)$ lies on the curve in the $x y$-plane given by the equation $f(x) g(y)=24+x+y$, where f is a differentiable function of x and g is a differentiable function of y. Selected values of f, f^{\prime}, g, and g^{\prime} are given in the table above. What is the value of $\frac{d y}{d x}$ at the point $(1,3)$?
(A) -11
(B) 4
(C) 5
(D) 13
7.

The graph of the increasing differentiable function f is shown above. Also shown is the line tangent to the graph of f at the point $(2,4)$. Let g be the inverse of f. Which of the following statements about g^{\prime} is true?

Unit 3 Progress Check: MCQ

(A) $g^{\prime}(2)=\frac{2}{3}$
(B) $g^{\prime}(2)=\frac{3}{2}$
(C) $g^{\prime}(4)=\frac{2}{3}$
(D) $g^{\prime}(4)=\frac{3}{2}$
8. Let f be the decreasing function defined by $f(x)=-x^{3}-6 x^{2}-12 x+8$, where $f(4)=-8$. If g is the inverse function of f, which of the following is a correct expression for $g^{\prime}(-8)$?
(A) $g^{\prime}(-8)=\frac{1}{f^{\prime}(-8)}$
(B) $g^{\prime}(-8)=\frac{1}{f^{\prime}(4)}$
(C) $g^{\prime}(-8)=f^{\prime}(4)$
(D) $g^{\prime}(-8)=f^{\prime}(-8)$
9.

x	-4	0	3
$f(x)$	0	3	5
$f^{\prime}(x)$	1	2	4

The table above gives selected values for a differentiable and increasing function f and its derivative. If $g(x)=f^{-1}(x)$ for all x, which of the following is a correct expression for $g^{\prime}(0)$?
(A) $g^{\prime}(0)=f^{\prime}(0)=2$
(B) $g^{\prime}(0)=\frac{1}{f^{\prime}(0)}=\frac{1}{2}$
(C) $g^{\prime}(0)=\frac{1}{f^{\prime}(-4)}=1$
(D) $g^{\prime}(0)=-\frac{f^{\prime}(0)}{(f(0))^{2}}=-\frac{2}{9}$
10. $\left.\frac{d}{d x}\left(\sin ^{-1}\left(x^{2}\right)\right)\right|_{x=\frac{1}{4}}=$
(A) $\frac{2\left(\frac{1}{4}\right)}{1+\left(\frac{1}{4}\right)^{4}}$
(B) $\frac{2\left(\frac{1}{4}\right)}{\sqrt{1-\left(\frac{1}{4}\right)^{4}}}$
(C) $2\left(\frac{1}{4}\right) \cos ^{-1}\left(\frac{1}{16}\right)$
(D) $-2\left(\frac{1}{4}\right) \cot \left(\frac{1}{16}\right) \csc \left(\frac{1}{16}\right)$
11. $\frac{d}{d x}\left(\cos ^{-1}(-3 x)\right)=$

Unit 3 Progress Check: MCQ

(A) $\frac{3}{\sqrt{1-(-3 x)^{2}}}$
(B) $\frac{-3}{\sqrt{1-(-3 x)^{2}}}$
(C) $-\sin ^{-1}(-3 x) \cdot(-3)$
(D) $-\cos ^{-2}(-3 x) \cdot(-3)$
12. Which of the following methods can be used to find the derivative of $y=\arccos (\sqrt{x})$ with respect to x ?
I. Use the quotient rule to differentiate $\frac{1}{\cos (\sqrt{x})}$.
II. Use the chain rule to differentiate $\cos (\arccos (\sqrt{x}))=\sqrt{x}$.
III. Use implicit differentiation to differentiate the function y in the relation $\cos y=\sqrt{x}$ with respect to x.
(A) I only
(B) III only
(C) II and III only
(D) I, II, and III
13. Which of the following expressions can be differentiated using the product rule?
(A) $\arcsin (\cos x)$
(B) $\sin x(\arccos x)$
(C) $e^{x}+\arctan x$
(D) $\left(12 x^{2}+3 x-6\right)^{e}$
14. Which of the following requires the use of implicit differentiation to find $\frac{d y}{d x}$?
(A) $2 y+3 x^{2}-x=5$
(B) $y=e^{3+x}+x^{3}$
(C) $y=e^{y+x}+x^{3}$
(D) $y=\frac{x^{4}+3}{4 x^{3}-2}$
15. For which of the following functions would the quotient rule be considered the best method for finding the derivative?
(A) $y=\left(x^{3}+x\right)^{-2}$
(B) $y=\frac{x^{3}+x}{x}$
(C) $y=\cos ^{-1}\left(x^{3}+x\right)$
(D) $y=\frac{\cos \left(x^{3}+x\right)}{x^{3}+x}$
16. If $y=3 e^{-2 x}$, then $\frac{d^{3} y}{d x^{3}}=$

Unit 3 Progress Check: MCQ

(A) $-24 e^{-2 x}$
(B) $-6 e^{-2 x}$
(C) $48 e^{-2 x}$
(D) $-216 e^{-6 x}$
17.

The figure above shows the graph of f^{\prime}, the derivative of the function f. At which of the four indicated values of x is $f^{\prime \prime}(x)$ least?
(A) A
(B) B
(C) C
(D) D
18. Let $y=f(x)$ be a twice-differentiable function such that $f(-1)=5$ and $\frac{d y}{d x}=\frac{1}{5}\left(x y^{2}+4 y\right)^{2}$. What is the value of $\frac{d^{2} y}{d x^{2}}$ at $x=-1$?

Unit 3 Progress Check: MCQ

(A) -190
(B) -70
(C) $\quad-2$
(D) 10

