Unit 5 Progress Check: MCQ Part A

1. 囬 Let f be the function given by $f(x)=\cos \left(x^{2}+x\right)+2$. The derivative of f is given by $f^{\prime}(x)=-(2 x+1) \sin \left(x^{2}+x\right)$. What value of c satisfies the conclusion of the Mean Value Theorem applied to f on the interval $[1,2]$?
(A) 1.079 because $f(1.079)=\frac{f(2)-f(1)}{2-1}$
(B) 1.438 because $f^{\prime}(1.438)=\frac{f(2)-f(1)}{2-1}$
(C) 1.750 because $f^{\prime \prime}(1.750)=0$
(D) 1.932 because $f^{\prime}(1.932)=f(1.932)$
2. \quad The derivative of the function f is given by $f^{\prime}(x)=\sqrt{x} \sin (3 \sqrt{x})$. On which of the following intervals in $[0,6 \pi]$ is f decreasing?
(A) $[0,1.097],[4.386,9.870],[17.546,18.850]$
(B) $[0.457,2.682],[7.073,13.654]$
(C) $[1.097,4.386],[9.870,17.546]$
(D) $[0,0.457],[2.682,7.073],[13.654,18.850]$
3. 囲 The concentration of a certain element in the water supply of a town is modeled by the function f, where $f(t)$ is measured in parts per billion and t is measured in years. The first derivative of f is given by $f^{\prime}(t)=1-\ln t-\sin t$. At what times t, for $0<t<5$, does the concentration attain a local minimum?
(A) $t=1.110$ only
(B) $t=2.074$
(C) $t=3.353$ only
(D) $t=1.110$ and $t=3.353$
4. Let f be the function given by $f(x)=\frac{x^{2}-9}{\sin x}$ on the closed interval $[0,5]$. Of the following intervals, on which can the Mean Value Theorem be applied to f ?
I. $[1,3]$, because f is continuous on $[1,3]$ and differentiable on $(1,3)$.
II. $[4,5]$, because f is continuous on $[4,5]$ and differentiable on $(4,5)$.
III. $[1,4]$, because f is continuous on $[1,4]$ and differentiable on $(1,4)$.
(A) None
(B) I only
(C) I and II only
(D) I, II, and III
5. Let f be a differentiable function with $f(-3)=7$ and $f(3)=8$. Which of the following must be true for some c in the interval $(-3,3)$?

Unit 5 Progress Check: MCQ Part A

(A) $f^{\prime}(c)=0$, since the Extreme Value Theorem applies.
(B) $f^{\prime}(c)=\frac{8+7}{3-(-3)}$, since the Mean Value Theorem applies.
(C) $f^{\prime}(c)=\frac{8-7}{3-(-3)}$, since the Mean Value Theorem applies.
(D) $f^{\prime}(c)=7.5$, since the Intermediate Value Theorem applies.
6. Let f be the function given by $f(x)=\frac{\sin x \cos x}{\left(x^{2}-4\right)}$ on the closed interval $[-2 \pi, 2 \pi]$. On which of the following closed intervals is the function f guaranteed by the Extreme Value Theorem to have an absolute maximum and an absolute minimum?
(A) $[-2 \pi, 2 \pi]$
(B) $[-2,2]$
(C) $[-1,1]$
(D) $\left[\frac{\pi}{2}, \pi\right]$
7. Let f be the function defined by $f(x)=\frac{x^{2}+1}{x+1}$ with domain $[0, \infty)$. The function f has no absolute maximum on its domain. Why does this not contradict the Extreme Value Theorem?
(A) The domain of f is not an open interval.
(B) The domain of f is not a closed and bounded interval.
(C) The function f is not continuous on its domain.
(D) The function f is not differentiable on its domain.
8.

x	0	1	2	3	4
$f(x)$	2	-2	4	7	18

Selected values of a continuous function f are given in the table above. Which of the following statements could be false?
(A) By the Intermediate Value Theorem applied to f on the interval $[0,4]$, there is a value c such that $f(c)=5$.
(B) By the Mean Value Theorem applied to f on the interval $[0,4]$, there is a value c such that $f^{\prime}(c)=4$.
(C) By the Extreme Value Theorem applied to f on the interval $[0,4]$, there is a value c such that $f(c) \leq f(x)$ for all x in $[0,4]$.
(D) By the Extreme Value Theorem applied to f on the interval $[0,4]$, there is a value c such that $f(c) \geq f(x)$ for all x in $[0,4]$.
9. Let f be the function defined by $f(x)=3 x^{3}-36 x+6$ for $-4<x<4$. Which of the following statements is true?

Unit 5 Progress Check: MCQ Part A

(A) f is decreasing on the interval $(0,4)$ because $f^{\prime}(x)<0$ on the interval $(0,4)$.
(B) f is increasing on the interval $(0,4)$ because $f^{\prime}(x)<0$ on the interval $(0,4)$.
(C) f is decreasing on the interval $(-2,0)$ because $f^{\prime \prime}(x)<0$ on the interval $(-2,0)$.
(D) f is decreasing on the interval $(-2,2)$ because $f^{\prime}(x)<0$ on the interval $(-2,2)$.
10. Let f be the function defined by $f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-6 x$. On which open intervals is f decreasing?
(A) $-2<x<3$ only
(B) $x<-2$ and $x>3$
(C) $x<\frac{1}{2}$ only
(D) There are no such intervals.
11. Let f be a function with first derivative given by $f^{\prime}(x)=(x+1)(x-2)(x-3)$. At what values of x does f have a relative maximum?
(A) 2 only
(B) -1 and 3 only
(C) 3 only
(D) $-1,2$, and 3

Unit 5 Progress Check: MCQ Part A

12.

The graph of f^{\prime}, the derivative of the function f, is shown above for $-1<x<5$. Which of the following statements is true for $-1<x<5$?
(A) f has one relative minimum and two relative maxima.
(B) f has two relative minima and one relative maximum.
(C) f has two relative minima and three relative maxima.
(D) f has three relative minima and three relative maxima.

