Unit 5 Progress Check: MCQ Part B

1. 囲 The second derivative of the function f is given by $f^{\prime \prime}(x)=x^{2} \cos (\sqrt{x})-2 x \cos (\sqrt{x})+\cos (\sqrt{x})$. At what values of x in the interval $(0,3)$ does the graph of f have a point of inflection?
(A) 2.467 only
(B) 1 and 2.467
(C) 1.443 and 2.734
(D) 1 and 1.962
2. 囲 The second derivative of the function f is given by $f^{\prime \prime}(x)=e^{\sin x}\left(2 \cos x-x \sin x+x \cos ^{2} x\right)$. The function f has many critical points, two of which are at $x=2.074$ and $x=7.980$. Which of the following statements is true?
(A) f has local minima at $x=2.074$ and at $x=7.980$.
(B) f has a local minimum at $x=2.074$ and a local maximum at $x=7.980$.
(C) f has a local maximum at $x=2.074$ and a local minimum at $x=7.980$.
(D) f has local maxima at $x=2.074$ and at $x=7.980$.
3. Let f be the function given by $f(x)=-x^{3}+3 x^{2}+24 x$. What is the absolute maximum value of f on the closed interval $[-6,6]$?
(A) -6
(B) 36
(C) 80
(D) 180
4. Let f be the function defined by $f(x)=x^{3}-\frac{3}{2} x^{2}-6 x$. What is the absolute maximum value of f on the interval $[-2,3]$?
(A) -10
(B) $-\frac{9}{2}$
(C) $\frac{7}{2}$
(D) 3
5. Let f be the function defined by $f(x)=x \cos x-\sin x$. What is the absolute maximum value of f on the interval $\left[-\frac{\pi}{2}, 2 \pi\right]$?
(A) $-\pi$
(B) 2π
(C) 0
(D) 1

Unit 5 Progress Check: MCQ Part B

6.

The graph of f^{\prime}, the derivative of the function f, is shown above. On which of the following open intervals is the graph of f concave down?
(A) $(-2,0)$ and $(2,4)$
(B) $(-3,2)$ and $(0,2)$
(C) $(-3,-1)$ only
(D) $(0,4)$

Unit 5 Progress Check: MCQ Part B

7.

Graph of f^{\prime}

Let f be the function defined by $f(x)=\frac{x^{5}}{20}-\frac{x^{4}}{12}-\frac{x^{3}}{3}$. The graph of f^{\prime}, the derivative of f, is shown above. On which of the following intervals is the graph of f concave up?
(A) $x<-1$ and $0<x<2$
(B) $-1<x<0$ and $x>2$
(C) $x<\frac{2}{3}-\frac{2 \sqrt{10}}{3}$ and $x>\frac{2}{3}+\frac{2 \sqrt{10}}{3}$
(D) $\frac{2}{3}-\frac{2 \sqrt{10}}{3}<x<\frac{2}{3}+\frac{2 \sqrt{10}}{3}$
8. The Second Derivative Test cannot be used to conclude that $x=1$ is the location of a relative minimum or relative maximum for which of the following functions?
(A)

$$
f(x)=\cos \left(x^{2}-1\right) \text {, where } f^{\prime}(x)=-2 x \sin \left(x^{2}-1\right) \text { and }
$$

$$
f^{\prime \prime}(x)=-2 \sin \left(x^{2}-1\right)-4 x^{2} \cos \left(x^{2}-1\right)
$$

(B) $f(x)=e^{(x-1)^{2}}$, where $f^{\prime}(x)=2(x-1) e^{(x-1)^{2}}$ and $f^{\prime \prime}(x)=4(x-1)^{2} e^{(x-1)^{2}}+2 e^{(x-1)^{2}}$
(C) $f(x)=\frac{x^{3}}{3}+x^{2}-3 x+1$, where $f^{\prime}(x)=x^{2}+2 x-3$ and $f^{\prime \prime}(x)=2 x+2$
(D) $f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+1$, where $f^{\prime}(x)=4 x^{3}-12 x^{2}+12 x-4$ and $f^{\prime \prime}(x)=12 x^{2}-24 x+12$

Unit 5 Progress Check: MCQ Part B

9.

The graph of $f^{\prime \prime}$, the second derivative of the continuous function f, is shown above on the interval $\left[0, \frac{\pi}{2}\right]$. On this interval f has only one critical point, which occurs at $x=\frac{\pi}{16}$. Which of the following statements is true about the function f on the interval $\left[0, \frac{\pi}{2}\right]$?
(A) f has a relative minimum at $x=\frac{\pi}{16}$ but not an absolute minimum.
(B) The absolute minimum of f is at $x=\frac{\pi}{16}$.
(C) f has a relative maximum at $x=\frac{\pi}{16}$ but not an absolute maximum.
(D) The absolute maximum of f is at $x=\frac{\pi}{16}$.

Unit 5 Progress Check: MCQ Part B

10.

The graph of f^{\prime}, the derivative of the continuous function f, is shown above on the interval $[-8,4]$. The graph of f^{\prime} has horizontal tangent lines at $x=-6, x=-2$, and $x=2$. On which of the following intervals is the graph of f both decreasing and concave up?
(A) $(-8,-6)$
(B) $(-6,-4.5)$
(C) $(-2,0)$
(D) $(1,2)$
11.

x	$0<x<1$	$x=1$	$1<x<2$	$x=2$	$2<x<3$	$x=3$	$3<x<4$	$x=4$	$4<x<5$
$f^{\prime}(x)$	Positive	0	Negative	DNE	Positive	0	Positive	0	Unknown
$f^{\prime \prime}(x)$	Unknown	-5	Negative	DNE	Negative	0	Positive	0	Unknown

The function f is continuous on the interval $(0,5)$ and is twice differentiable except at $x=2$, where the derivatives do not exist (DNE). Information about the first and second derivatives of f for some values of x in the interval $(0,5)$ is given in the table above. Which of the following statements could be false?

Unit 5 Progress Check: MCQ Part B

(A) The function f has a relative maximum at $x=1$.
(B) The function f has a relative minimum at $x=2$.
(C) The graph of f has a point of inflection at $x=3$.
(D) The graph of f has a point of inflection at $x=4$.
12.

Graph of f^{\prime}
The graph of f^{\prime}, the derivative of the continuous function f, is shown above on the interval $-3<x<7$. Which of the following statements is true about f on the interval $-3<x<7$?
(A) f has three relative extrema, and the graph of f has one point of inflection.
(B) f has three relative extrema, and the graph of f has four points of inflection.
(C) f has four relative extrema, and the graph of f has two points of inflection.
(D) f has four relative extrema, and the graph of f has four points of inflection.

