- 1. If The second derivative of the function f is given by $f''(x) = x^2 \cos(\sqrt{x}) 2x \cos(\sqrt{x}) + \cos(\sqrt{x})$. At what values of x in the interval (0, 3) does the graph of f have a point of inflection?
 - (A) 2.467 only
 - (B) 1 and 2.467
 - (C) 1.443 and 2.734
 - (D) 1 and 1.962
- 2. If The second derivative of the function f is given by $f''(x) = e^{\sin x} (2\cos x x\sin x + x\cos^2 x)$. The function f has many critical points, two of which are at x = 2.074 and x = 7.980. Which of the following statements is true?
 - (A) f has local minima at x = 2.074 and at x = 7.980.
 - (B) f has a local minimum at x = 2.074 and a local maximum at x = 7.980.
 - (C) f has a local maximum at x = 2.074 and a local minimum at x = 7.980.
 - (D) f has local maxima at x = 2.074 and at x = 7.980.
- 3. Let f be the function given by $f(x) = -x^3 + 3x^2 + 24x$. What is the absolute maximum value of f on the closed interval [-6, 6]?
 - (A) -6
 - (B) 36
 - (C) 80
 - (D) 180
- 4. Let f be the function defined by $f(x) = x^3 \frac{3}{2}x^2 6x$. What is the absolute maximum value of f on the interval [-2, 3]?
 - (A) -10

(B)	$-\frac{9}{2}$	
(C)	$\frac{7}{2}$	~
(D)	3	

5. Let f be the function defined by $f(x) = x \cos x - \sin x$. What is the absolute maximum value of f on the interval $\left[-\frac{\pi}{2}, 2\pi\right]$?

(A)	$-\pi$	
(B)	2π	\checkmark
(C)	0	
(D)	1	

6.

The graph of f', the derivative of the function f, is shown above. On which of the following open intervals is the graph of f concave down?

- (A) (-2,0) and (2,4)
- (B) (-3,2) and (0,2)
- (C) (-3, -1) only
- (D) (0, 4)

Graph of f'

Let f be the function defined by $f(x) = \frac{x^5}{20} - \frac{x^4}{12} - \frac{x^3}{3}$. The graph of f', the derivative of f, is shown above. On which of the following intervals is the graph of f concave up?

(A) x < -1 and 0 < x < 2

(B)
$$-1 < x < 0$$
 and $x > 2$
(C) $x < \frac{2}{3} - \frac{2\sqrt{10}}{3}$ and $x > \frac{2}{3} + \frac{2\sqrt{10}}{3}$
(D) $\frac{2}{3} - \frac{2\sqrt{10}}{3} < x < \frac{2}{3} + \frac{2\sqrt{10}}{3}$

8. The Second Derivative Test cannot be used to conclude that x = 1 is the location of a relative minimum or relative maximum for which of the following functions?

(A)
$$\begin{aligned} &f(x) = \cos(x^2 - 1), \text{ where } f'(x) = -2x\sin(x^2 - 1) \text{ and} \\ &f''(x) = -2\sin(x^2 - 1) - 4x^2\cos(x^2 - 1) \end{aligned}$$
(B)
$$f(x) = e^{(x-1)^2}, \text{ where } f'(x) = 2(x-1)e^{(x-1)^2} \text{ and } f''(x) = 4(x-1)^2e^{(x-1)^2} + 2e^{(x-1)^2} \end{aligned}$$
(C)
$$f(x) = \frac{x^3}{3} + x^2 - 3x + 1, \text{ where } f'(x) = x^2 + 2x - 3 \text{ and } f''(x) = 2x + 2 \end{aligned}$$
(D)
$$\begin{aligned} f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1, \text{ where } f'(x) = 4x^3 - 12x^2 + 12x - 4 \text{ and} \end{aligned}$$

The graph of f'', the second derivative of the continuous function f, is shown above on the interval $\left[0, \frac{\pi}{2}\right]$. On this interval f has only one critical point, which occurs at $x = \frac{\pi}{16}$. Which of the following statements is true about the function f on the interval $\left[0, \frac{\pi}{2}\right]$?

(A) f has a relative minimum at $x = \frac{\pi}{16}$ but not an absolute minimum.

(B) The absolute minimum of f is at $x = \frac{\pi}{16}$.	\checkmark
(0	f has a relative manimum at $m = \pi$, but not an absolute manimum	

- (C) f has a relative maximum at $x = \frac{\pi}{16}$ but not an absolute maximum.
- (D) The absolute maximum of f is at $x = \frac{\pi}{16}$.

The graph of f', the derivative of the continuous function f, is shown above on the interval [-8, 4]. The graph of f' has horizontal tangent lines at x = -6, x = -2, and x = 2. On which of the following intervals is the graph of f both decreasing and concave up?

(A)
$$(-8, -6)$$

(B)
$$(-6, -4.5)$$

(C)
$$(-2,0)$$

(D)
$$(1,2)$$

11.

x	0 < x < 1	x = 1	ig 1 < x < 2	x=2	2 < x < 3	x = 3	3 < x < 4	x = 4	4 < x < 5
f'(x)	Positive	0	Negative	DNE	Positive	0	Positive	0	Unknown
f''(x)	Unknown	-5	Negative	DNE	Negative	0	Positive	0	Unknown

The function f is continuous on the interval (0, 5) and is twice differentiable except at x = 2, where the derivatives do not exist (DNE). Information about the first and second derivatives of f for some values of x in the interval (0, 5) is given in the table above. Which of the following statements could be false?

- (A) The function f has a relative maximum at x = 1.
- (B) The function f has a relative minimum at x = 2.
- (C) The graph of f has a point of inflection at x = 3.
- (D) The graph of f has a point of inflection at x = 4.

12.

The graph of f', the derivative of the continuous function f, is shown above on the interval -3 < x < 7. Which of the following statements is true about f on the interval -3 < x < 7?

- (A) f has three relative extrema, and the graph of f has one point of inflection.
- (B) f has three relative extrema, and the graph of f has four points of inflection.
- (C) f has four relative extrema, and the graph of f has two points of inflection.

(D) f has four relative extrema, and the graph of f has four points of inflection.