\qquad

1. Using a protractor and ruler, rotate the point $(6,8) 120$ degrees around the origin. Find the new exact coordinates.

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos 120^{\circ} & -\sin 120^{\circ} \\
\sin 120^{\circ} & \cos 120^{\circ}
\end{array}\right]\left[\begin{array}{l}
6 \\
8
\end{array}\right]} \\
(-9.93,1.20)
\end{gathered}
$$

2. Using a protractor and ruler, rotate the point $(-4,9) 200$ degrees around the origin. Find the new coordinates accurate to hundredths.

$$
\left[\begin{array}{rr}
\cos 200^{\circ} & -\sin 200^{\circ} \\
\sin 200^{\circ} & \cos 200^{\circ}
\end{array}\right]\left[\begin{array}{c}
-4 \\
9
\end{array}\right]
$$

$$
(6.84,-7.09)
$$

In $x_{\text {Th }}$ type $\cos (A) \cos (T)-\sin (A) \sin (T)$
$n y_{\text {Th }}$ type $\sin (A) \cos (T)+\cos (A) \sin (T)$
$\left[\begin{array}{lr}\cos (A) & -\sin (A) \\ \sin (A) & \cos (A)\end{array}\right]\left[\begin{array}{l}\cos (T) \\ \sin (T)\end{array}\right]$
Thinking about matrix multiplication, what two matrices would have given this result?
3. Find the area of a regular 180 gon with side 6 inches.

$$
\begin{aligned}
\tan 10^{\circ} & =\frac{3}{h} \\
h & =\frac{3}{\tan 1^{\circ}} \\
h & =171.9
\end{aligned}
$$

$$
\begin{aligned}
& A=180_{\Delta} \cdot \frac{1}{2} \cdot 6 \cdot 171.9 \\
& A=92809.7 \mathrm{ux}^{2}
\end{aligned}
$$

4. Find the area of a triangle with an acute angle of 65 degrees. The measures of the two sides that make up the 65 degrees are 10 inches and 12 inches.

$$
\begin{array}{rlrl}
\sin 65^{\circ} & =\frac{h}{10} & A & =\frac{1}{2} b h \\
10 \sin 65^{\circ} & =h & A & =\frac{1}{2}(12)(9.06) \\
9.06 & =h & A & =54.38 \mathrm{un}^{2}
\end{array}
$$

5. Find the area of a parallelogram whose sides are 15 inches and 18 inches and has one angle of 140 degrees.
 $\sin 40^{\circ}=\frac{h}{15}$

$$
15 \operatorname{sen} 40^{\circ}=h
$$

$$
9.64=h
$$

$$
\begin{aligned}
& A=b h \\
& A=18(9.64) \\
& A=173.55 \mathrm{un}^{2}
\end{aligned}
$$

6. Find the angle the line with equation $4 x-7 y=9$ makes with the x axis. Does the line have negative or positive slope?

$$
\begin{array}{ll}
-7 y=-4 x+9 & \\
y=\frac{4}{7} x-\frac{9}{7} & \tan \theta=\frac{4}{7} \\
& \tan ^{-1}\left(\frac{4}{7}\right)=29.7^{\circ}
\end{array}
$$

